Temperature- and Pressure-Induced Polyamorphic Transitions in AuCuSi Alloy

Temperature-induced liquid–liquid phase transition (LLPT) and pressure-induced amorphous–amorphous phase transition (AAPT) have never been simultaneously reported in any single metallic system. In an Au55Cu25Si20 alloy, however, we discovered a temperature-induced LLPT by detecting “reversible λ-anomalies” of the thermal expansion coefficient between two liquid states at ambient pressure, while a pressure-induced AAPT in Au55Cu25Si20 metallic glass (MG) occurs upon compression at ambient temperature. Both LLPT and AAPT are reversible with a hysteresis in temperature and pressure, respectively. Using molecular dynamics simulations and synchrotron X-ray techniques, we elucidate structural differences in both low- and high-pressure Au55Cu25Si20 MG phases and low- and high-temperature Au55Cu25Si20 liquid phases. Electronic transfer between Si and Au or/and Cu atoms occurs in both temperature-induced LLPT and pressure-induced AAPT in the Au55Cu25Si20 alloy.

[1]  M. Stolpe,et al.  Microscopic evidence of the connection between liquid-liquid transition and dynamical crossover in an ultraviscous metallic glass former , 2018, Physical Review Materials.

[2]  X. D. Wang,et al.  Structural signature in Au-based amorphous alloys , 2017 .

[3]  K. Chapman,et al.  Polyamorphism in Yb-based metallic glass induced by pressure , 2017, Scientific Reports.

[4]  Tiqiao Xiao,et al.  Temperature-dependent structure evolution in liquid gallium , 2017 .

[5]  Jianzhong Jiang,et al.  Pressure-induced polyamorphism in a main-group metallic glass , 2016 .

[6]  Yue Wu,et al.  Evidence of liquid–liquid transition in glass-forming La50Al35Ni15 melt above liquidus temperature , 2015, Nature Communications.

[7]  J. Tse,et al.  Origin of pressure-induced crystallization of Ce75Al25 metallic glass , 2015, Nature Communications.

[8]  Jianzhong Jiang,et al.  Atomic structure of Pd81Si19 glassy alloy under high pressure , 2014 .

[9]  U. E. Klotz,et al.  A colourimetric and microstructural study of the tarnishing of gold-based bulk metallic glasses , 2014 .

[10]  K. Kelton,et al.  Thermal expansion measurements by x-ray scattering and breakdown of Ehrenfest's relation in alloy liquids , 2014 .

[11]  X. D. Wang,et al.  Pressure-induced amorphous-to-amorphous reversible transformation in Pr75Al25 , 2013 .

[12]  G. Ruocco,et al.  Dynamical crossover at the liquid-liquid transformation of a compressed molten alkali metal. , 2013, Physical review letters.

[13]  J. Eckert,et al.  Structural behaviour of Pd40Cu30Ni10P20 metallic glass under high pressure , 2013 .

[14]  Andreas Meyer,et al.  Liquid–liquid transition in a strong bulk metallic glass-forming liquid , 2013, Nature Communications.

[15]  Jianzhong Jiang,et al.  Negative expansions of interatomic distances in metallic melts , 2013, Proceedings of the National Academy of Sciences.

[16]  H. Mao,et al.  First-order liquid-liquid phase transition in cerium. , 2013, Physical review letters.

[17]  D. V. Louzguine-Luzgin,et al.  Structural features and high quasi-static strain rate sensitivity of Au49Cu26.9Ag5.5Pd2.3Si16.3 bulk metallic glass , 2012 .

[18]  Y. Y. Wang,et al.  Electronic structure inheritance and pressure-induced polyamorphism in lanthanide-based metallic glasses. , 2012, Physical review letters.

[19]  X. D. Wang,et al.  Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses , 2012, Scientific Reports.

[20]  X. Wang,et al.  Thermal expansion of a La-based bulk metallic glass: insight from in situ high-energy x-ray diffraction , 2011 .

[21]  B. Lin,et al.  Crystalline monolayer surface of liquid Au–Cu–Si–Ag–Pd: Metallic glass former , 2011 .

[22]  Yang Ding,et al.  Long-Range Topological Order in Metallic Glass , 2011, Science.

[23]  X. D. Wang,et al.  Low-density to high-density transition in Ce75Al23Si2 metallic glass , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Wilfried Wurth,et al.  The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons , 2010, Proceedings of the National Academy of Sciences.

[25]  X. D. Wang,et al.  Properties of polyamorphous Ce{sub 75}Al{sub 25} metallic glasses , 2010 .

[26]  Yang Ding,et al.  Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass. , 2010, Physical review letters.

[27]  Christopher M. Martin,et al.  Detection of First-Order Liquid/Liquid Phase Transitions in Yttrium Oxide-Aluminum Oxide Melts , 2008, Science.

[28]  P Ganesh,et al.  Liquid-liquid transition in supercooled silicon determined by first-principles simulation. , 2008, Physical review letters.

[29]  J. Raty,et al.  Tetrahedral clustering in molten lithium under pressure. , 2008, Physical review letters.

[30]  Jianzhong Jiang,et al.  Zr–(Cu,Ag)–Al bulk metallic glasses , 2008 .

[31]  E. Schwegler,et al.  Electronic and structural transitions in dense liquid sodium , 2007, Nature.

[32]  J Liu,et al.  Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure , 2007, Proceedings of the National Academy of Sciences.

[33]  S. Sastry,et al.  Vitrification of a monatomic metallic liquid , 2007, Nature.

[34]  P. L. Lee,et al.  Polyamorphism in a metallic glass. , 2007, Nature materials.

[35]  B. Ocko,et al.  Crystalline surface phases of the liquid Au-Si eutectic alloy , 2007, cond-mat/0702413.

[36]  B. Ocko,et al.  Surface Crystallization in a Liquid AuSi Alloy , 2006, Science.

[37]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[38]  H. Stanley,et al.  Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Evan Ma,et al.  Pressure tunes atomic packing in metallic glass , 2006 .

[40]  Peter J. Eng,et al.  Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-ray scattering , 2005 .

[41]  S. Sastry,et al.  Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. , 2005, Physical review letters.

[42]  P. McMillan,et al.  A density-driven phase transition between semiconducting and metallic polyamorphs of silicon , 2005, Nature materials.

[43]  Hajime Tanaka,et al.  Control of the fragility of a glass-forming liquid using the liquid-liquid phase transition. , 2005, Physical review letters.

[44]  Gavin Vaughan,et al.  Excess free volume in metallic glasses measured by X-ray diffraction , 2005 .

[45]  A. Faraone,et al.  Fragile-to-strong liquid transition in deeply supercooled confined water. , 2004, The Journal of chemical physics.

[46]  Hajime Tanaka,et al.  Critical-Like Phenomena Associated with Liquid-Liquid Transition in a Molecular Liquid , 2004, Science.

[47]  Osamu Shimomura,et al.  Macroscopic Separation of Dense Fluid Phase and Liquid Phase of Phosphorus , 2004, Science.

[48]  T. Morishita High density amorphous form and polyamorphic transformations of silicon. , 2004, Physical review letters.

[49]  P. McMillan Polyamorphic transformations in liquids and glasses , 2004 .

[50]  W. Roseker,et al.  Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass , 2004 .

[51]  Srikanth Sastry,et al.  Liquid–liquid phase transition in supercooled silicon , 2003, Nature materials.

[52]  P. McMillan,et al.  Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon , 2001, Nature.

[53]  T. Proffen,et al.  PDFgetX: a program for obtaining the atomic pair distribution function from X-ray powder diffraction data , 2001 .

[54]  Peter H. Poole,et al.  Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica , 2001, Nature.

[55]  S. Sastry The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids , 2000, Nature.

[56]  J. Eckert,et al.  Pressure effect on crystallization of metallic glass Fe72P11C6Al5B4Ga2 alloy with wide supercooled liquid region , 2000 .

[57]  Osamu Shimomura,et al.  A first-order liquid–liquid phase transition in phosphorus , 2000, Nature.

[58]  J. Glosli,et al.  LIQUID-LIQUID PHASE TRANSFORMATION IN CARBON , 1999 .

[59]  Kaori Ito,et al.  Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water , 1999, Nature.

[60]  H. Stanley,et al.  The relationship between liquid, supercooled and glassy water , 1998, Nature.

[61]  Perottoni,et al.  Pressure-induced amorphization and negative thermal expansion in ZrW2O8 , 1998, Science.

[62]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[63]  H. Eugene Stanley,et al.  Phase behaviour of metastable water , 1992, Nature.

[64]  Mao,et al.  High-pressure x-ray diffraction of SiO2 glass. , 1992, Physical review letters.

[65]  E. Whalley,et al.  An apparently first-order transition between two amorphous phases of ice induced by pressure , 1985, Nature.

[66]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[67]  E. Whalley,et al.  ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids , 1984, Nature.

[68]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[69]  J. L. Finney,et al.  Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[70]  X. D. Wang,et al.  Atomic structure of Pd 81 Si 19 glassy alloy under high pressure , 2018 .

[71]  J. Eckert,et al.  Thermal behaviour of Pd40Cu30Ni10P20 bulk metallic glass , 2012 .

[72]  C. Angell,et al.  Comparison of thermodynamic properties of simulated liquid silica and water , 1997 .

[73]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[74]  P. McMillan,et al.  Density-driven liquid–liquid phase separation in the system AI2O3–Y2O3 , 1994, Nature.