Enhanced Winter Carbon Export Observed by BGC‐Argo in the Northwest Pacific Ocean

[1]  H. Mitsudera,et al.  Anticyclonic eddies and Kuroshio Meander Formation , 2001 .

[2]  H. Ducklow,et al.  Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea , 1994, Nature.

[3]  R. Onken,et al.  Diurnal variation and primary production in the ocean preliminary results of a Lagrangian ensemble model , 1982 .

[4]  R. Feely,et al.  The oceanic sink for anthropogenic CO2 from 1994 to 2007 , 2019, Science.

[5]  John S. Parslow,et al.  A model of annual plankton cycles , 2013 .

[6]  H. Sverdrup,et al.  On Conditions for the Vernal Blooming of Phytoplankton , 1953 .

[7]  J. Marra,et al.  Early-spring export of phytoplankton production in the northeast Atlantic Ocean , 1994 .

[8]  Mary Jane Perry,et al.  Eddy-driven subduction exports particulate organic carbon from the spring bloom , 2015, Science.

[9]  M. D. Keller,et al.  Spring phytoplankton blooms in the absence of vertical water column stratification , 1992, Nature.

[10]  H. Claustre,et al.  Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans , 2007 .

[11]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[12]  Deborah K. Steinberg,et al.  Revisiting Carbon Flux Through the Ocean's Twilight Zone , 2006, Science.

[13]  T. Saino,et al.  Comparison of sinking particles in the upper 200 m between subarctic station K2 and subtropical station S1 based on drifting sediment trap experiments , 2016, Journal of Oceanography.

[14]  E. Birge The work of the wind in warming a lake , 1916 .

[15]  M. Behrenfeld,et al.  Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton blooms. , 2010, Ecology.

[16]  T. Ishimaru,et al.  Circulation and water exchange in the anticyclonic gyre off Shikoku , 1986 .

[17]  H. Claustre,et al.  Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump , 2016, Nature geoscience.

[18]  Steven Emerson,et al.  Annual net community production and the biological carbon flux in the ocean , 2014 .

[19]  L. Prieur,et al.  Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre , 2017 .

[20]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[21]  Ann E. Gargett,et al.  Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean , 1983 .

[22]  Hervé Claustre,et al.  Observing the Global Ocean with Biogeochemical-Argo. , 2020, Annual review of marine science.

[23]  J. Bishop,et al.  Year‐round observations of carbon biomass and flux variability in the Southern Ocean , 2009 .

[24]  E. Boss,et al.  Monitoring ocean biogeochemistry with autonomous platforms , 2020, Nature Reviews Earth & Environment.

[25]  H. Claustre,et al.  The Intraseasonal Dynamics of the Mixed Layer Pump in the Subpolar North Atlantic Ocean: A Biogeochemical‐Argo Float Approach , 2019, Global Biogeochemical Cycles.

[26]  David A. Siegel,et al.  Global assessment of ocean carbon export by combining satellite observations and food‐web models , 2014 .

[27]  T. DeVries,et al.  The export and fate of organic matter in the ocean: New constraints from combining satellite and oceanographic tracer observations , 2017 .

[28]  D. Siegel,et al.  Metrics that matter for assessing the ocean biological carbon pump , 2020, Proceedings of the National Academy of Sciences.

[29]  Henry C. Bittig,et al.  A BGC-Argo Guide: Planning, Deployment, Data Handling and Usage , 2019, Front. Mar. Sci..

[30]  E. Boss,et al.  Resurrecting the ecological underpinnings of ocean plankton blooms. , 2014, Annual review of marine science.

[31]  Raffaele Ferrari,et al.  Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms , 2011 .

[32]  S. Doney,et al.  Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem , 2015 .

[33]  H. Claustre,et al.  Multi-faceted particle pumps drive carbon sequestration in the ocean , 2019, Nature.

[34]  Thierry Carval,et al.  On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array , 2019, Front. Mar. Sci..

[35]  S. Doney,et al.  How Choice of Depth Horizon Influences the Estimated Spatial Patterns and Global Magnitude of Ocean Carbon Export Flux , 2018 .

[36]  Patrice Klein,et al.  Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime , 2001 .

[37]  G. Dall’Olmo,et al.  Carbon export by small particles in the Norwegian Sea , 2014 .

[38]  M. J. Richardson,et al.  The role of seasonal and diel changes in mixed-layer depth on carbon and chlorophyll distributions in the Arabian Sea , 1999 .

[39]  Patrick M. Holligan,et al.  Causes and consequences of variability in the timing of spring phytoplankton blooms , 1994 .

[40]  P. Strutton,et al.  Evaluating Southern Ocean Carbon Eddy‐Pump From Biogeochemical‐Argo Floats , 2018 .

[41]  Richard Sanders,et al.  Export and mesopelagic particle flux during a North Atlantic spring diatom bloom , 2011 .

[42]  P. Wiebe,et al.  Particulate matter production and consumption in deep mixed layers: observations in a warm-core ring , 1986 .

[43]  Wilford D. Gardner,et al.  The oceanic mixed-layer pump , 1995 .

[44]  M. Gregg,et al.  Surface mixed and mixing layer depths , 1995 .

[45]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.