Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum

We report on molecular-dynamics (MD) simulations of tensile loading of nano-crystalline Al modeled by an embedded-atom method (EAM) potential. Usage of two different sample preparation methods of the nano-crystalline material allows us to compare mechanical properties for different sample qualities. A Voronoi-constructed polycrystal exhibits nearly no pores and has different mechanical properties compared to a material that is sintered under pressure and temperature from spherical nanoparticles, resulting in a lower-density sample. We found an inverse Hall-Petch relation for the flow stress for grain sizes smaller than 10 nm. Intergranular fracture was observed for the larger Al grain sizes, but not for nano-crystalline Cu.

[1]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[2]  Simon R. Phillpot,et al.  Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation , 2002, Nature materials.

[3]  Jeffrey Wadsworth,et al.  Hall-petch relation in nanocrystalline solids , 1991 .

[4]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[5]  C. Koch,et al.  The Inverse Hall-Petch Effect—Fact or Artifact? , 2000 .

[6]  F. Fujita,et al.  Physics of New Materials , 1994 .

[7]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[8]  H. V. Swygenhoven,et al.  Plastic behavior of nanophase Ni: A molecular dynamics computer simulation , 1997 .

[9]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[10]  Sanders,et al.  Are nanophase grain boundaries anomalous? , 1995, Physical review letters.

[11]  A. Voter Parallel replica method for dynamics of infrequent events , 1998 .

[12]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[13]  A. Rosen,et al.  On the validity of the hall-petch relationship in nanocrystalline materials , 1989 .

[14]  J. S. Rowlinson,et al.  PHASE TRANSITIONS , 2021, Topics in Statistical Mechanics.

[15]  G. Bartels,et al.  Contact dynamics simulations of compacting cohesive granular systems , 2002 .

[16]  M. A. Haque,et al.  Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension , 2002 .

[17]  Alfredo Caro,et al.  Grain-boundary structures in polycrystalline metals at the nanoscale , 2000 .

[18]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[19]  Holian,et al.  Fracture simulations using large-scale molecular dynamics. , 1995, Physical review. B, Condensed matter.

[20]  D. Pettifor,et al.  Electron theory in alloy design , 1992 .

[21]  R. W. Siegel Nanophase Materials: Synthesis, Structure, and Properties , 1998 .

[22]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[23]  K. Kadau,et al.  Atomistic Modeling of Diffusion in Aluminum , 2002 .

[24]  R. W. Siegel,et al.  Mechanical properties of nanophase metals , 1994 .

[25]  K. Jacobsen,et al.  Atomic-scale simulations of the mechanical deformation of nanocrystalline metals , 1998, cond-mat/9812102.

[26]  R. Evershed,et al.  Mat Res Soc Symp Proc , 1995 .