Physical Vapor Deposition

In the early days of microelectronics, physical vapor deposition was simply applied to the evaporation of Al to form the high conductivity connections to transistors. With the ever-increasing complexity of silicon integrated circuits and the development of GaAs circuits, a much wider range of materials must be deposited to fulfill special needs for patterning, electromigration, diffusion barriers, Schottky contacts, air bridges, etc. (Table 1); alloys and compounds must be deposited as well as elemental metals. Sputter deposition has been used increasingly and other specialized techniques have also been applied; reactive evaporation, activated reactive evaporation, ion plating, and cluster ion deposition have been developed to meet special needs. However, evaporative and sputter deposition techniques are still the primary physical vapor deposition methods used for microcircuit fabrication and this review chapter will focus on their similarities and differences as they apply to microcircuit fabrication in both Si and GaAs.

[1]  C. Ting,et al.  Study of planarized sputter‐deposited SiO2 , 1978 .

[2]  J. Cuomo,et al.  Synthesis of compound thin films by dual ion beam deposition. I. Experimental approach , 1985 .

[3]  P. S. Mcleod,et al.  High‐rate sputtering of aluminum for metallization of integrated circuits , 1977 .

[4]  W. D. Westwood,et al.  Glow discharge sputtering , 1976 .

[5]  J. Vossen Contamination in Films Sputtered From Hot-Pressed Targets , 1971 .

[6]  W. Heitmann Reactive evaporation in ionized gases. , 1971, Applied optics.

[7]  J. Coburn,et al.  PLASMA DIAGNOSTICS OF AN rf-SPUTTERING GLOW DISCHARGE. , 1971 .

[8]  N. Savvides,et al.  Charged particle fluxes from planar magnetron sputtering sources , 1986 .

[9]  R. Shimizu,et al.  Monte Carlo Simulation Approach to Sputtering in Multi-Component Targets , 1985 .

[10]  R. Hultgren,et al.  Selected Values of Thermodynamic Properties of Metals and Alloys , 1963 .

[11]  A. F. Hmiel,et al.  Partial pressure control of reactively sputtered titanium nitride , 1985 .

[12]  D. Mckenzie,et al.  An interferometric investigation of the thermalization of copper atoms in a magnetron sputtering discharge , 1986 .

[13]  N. Hosokawa,et al.  Self-sputtering phenomena in high-rate coaxial cylindrical magnetron sputtering , 1977 .

[14]  D. W. Hoffman,et al.  The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures☆ , 1977 .

[15]  K. Müller Monte Carlo calculation for structural modifications in ion‐assisted thin film deposition due to thermal spikes , 1986 .

[16]  H. F. Winters,et al.  Sputtering of chemisorbed gas (nitrogen on tungsten) by low‐energy ions , 1974 .

[17]  G. Comşa Spatial Initial Distribution of Ions in an MBAG and the Modulation Factor , 1971 .

[18]  G. McCracken,et al.  The behaviour of surfaces under ion bombardment , 1975 .

[19]  D. W. Henderson,et al.  Simulation of structural anisotropy and void formation in amorphous thin films , 1974 .

[20]  E. J. Lloyd,et al.  High temperature stability of PtSi formed by reaction of metal with silicon or by cosputtering , 1983 .

[21]  K. Behrndt,et al.  Automatic control of film-deposition rate with the crystal oscillator for preparation of alloy films☆ , 1962 .

[22]  R. J. Gnaedinger Some Calculations of the Thickness Distribution of Films Deposited from Large Area Sputtering Sources , 1969 .

[23]  P. Ghate,et al.  Magnetron-sputtered aluminum films for integrated circuit interconnections , 1979 .

[24]  E. Dullni Velocity distributions of the metal atoms sputtered from oxygen and nitrogen covered Ti- and Al-surfaces , 1984 .

[25]  H. Leamy,et al.  Columnar microstructure in vapor-deposited thin films , 1977 .

[26]  R. Behrisch,et al.  Sputtering by Particle Bombardment III , 1981 .

[27]  E. H. C. Parker,et al.  The Technology and physics of molecular beam epitaxy , 1985 .

[28]  M. Hablanian Comments on the history of vacuum pumps , 1984 .

[29]  J. Thornton Substrate heating in cylindrical magnetron sputtering sources , 1978 .

[30]  D. W. Hoffman Stress and property control in sputtered metal films without substrate bias , 1983 .

[31]  G. Wehner,et al.  Alloy Sputtering Studies with in situ Auger Electron Spectroscopy , 1971 .

[32]  H. Yoshihara,et al.  Enhanced ARE apparatus and TiN synthesis , 1979 .

[33]  W. D. Davis,et al.  Ion Energies at the Cathode of a Glow Discharge , 1963 .

[34]  William Dallas Sproul,et al.  Very high rate reactive sputtering of TiN, ZrN and HfN , 1983 .

[35]  R. Messier,et al.  Are thin film physical structures fractals , 1985 .

[36]  I. Blech,et al.  Step coverage simulation and measurement in a dc planar magnetron sputtering system , 1983 .

[37]  R. S. Robinson,et al.  Mean free path of negative ions in diode sputtering , 1978 .

[38]  L. Maissel,et al.  Techniques for sputtering single and multilayer films of uniform resistivity , 1963 .

[39]  J. Davies,et al.  THE EFFECT OF ENERGY AND INTEGRATED FLUX ON THE RETENTION AND RANGE OF INERT GAS IONS INJECTED AT KEV ENERGIES IN METALS , 1963 .

[40]  Y. Matsuda,et al.  Energy Dependence of Angular Distributions of Sputtered Particles by Ion-Beam Bombardment at Normal Incidence , 1986 .

[41]  J. Vossen,et al.  Thin Film Processes , 1979 .

[42]  David P. Smith Analysis of surface composition with low-energy backscattered ions , 1971 .

[43]  A. K. Sinha,et al.  Control of Resistivity, Microstructure, and Stress in Electron Beam Evaporated Tungsten Films , 1973 .

[44]  J. Coburn,et al.  Positive‐ion bombardment of substrates in rf diode glow discharge sputtering , 1972 .

[45]  D. S. Yee,et al.  Modification of niobium film stress by low‐energy ion bombardment during deposition , 1982 .

[46]  J. Coburn,et al.  Frequency dependence of ion bombardment of grounded surfaces in rf argon glow discharges in a planar system , 1985 .

[47]  P. K. Gallagher,et al.  Argon Entrapment and Evolution in Sputtered TaSi2 Films , 1985 .

[48]  T. Motohiro,et al.  Applications of Monte Carlo simulation in the analysis of a sputter‐deposition process , 1986 .

[49]  C. M. Wayman,et al.  Temperature Changes in Thin Films during Growth by Physical Vapor Deposition. II. Experimental , 1971 .

[50]  A. Gras-marti,et al.  Evolution towards thermalization, and diffusion, of sputtered particle fluxes: Spatial profiles , 1984 .

[51]  T. T. Sheng,et al.  Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by rf sputtering , 1973 .

[52]  S. Dahlgren 5 - Materials Production by High Rate Sputter Deposition , 1980 .

[53]  Heinz H. Busta,et al.  PLASMA ETCH MONITORING WITH LASER INTERFEROMETRY , 1979 .

[54]  G. D. Davis,et al.  Effects of impurities on the reaction of Ta and Si multilayers processed by rapid thermal annealing , 1986 .

[55]  W. Westwood,et al.  Tantalum thin films , 1975 .

[56]  C. Miner,et al.  High rate deposition of transparent conducting films by modified reactive planar magnetron sputtering of Cd2Sn alloy , 1981 .

[57]  W. Westwood,et al.  Reactive deposition of low loss Al2O3 optical waveguides by modified dc planar magnetron sputtering , 1984 .

[58]  W. Westwood Porosity in sputtered platinum films , 1974 .

[59]  I. Blech,et al.  Optimization of Al step coverage through computer simulation and scanning electron microscopy , 1978 .

[60]  T. Tisone,et al.  Low-voltage triode sputtering and backsputtering with a confined plasma: Part IV. Heat transfer characteristics , 1974 .

[61]  S. Maniv,et al.  Surface oxidation kinetics of sputtering targets , 1980 .

[62]  W. Westwood,et al.  Reactively sputtered AlN films for GaAs annealing caps , 1986 .

[63]  Roger Kelly,et al.  Criteria for bombardment-induced structural changes in non-metallic solids , 1975 .

[64]  B. Chapman,et al.  Glow Discharge Processes: Sputtering and Plasma Etching , 1980 .

[65]  S. Maniv,et al.  Discharge characteristics for magnetron sputtering of Al in Ar and Ar/O2 mixtures , 1980 .

[66]  W. Westwood,et al.  Stress control in reactively sputtered AlN and TiN films , 1987 .

[67]  J. J. Cuomo,et al.  Influence of sputtering parameters on the composition of multicomponent films , 1975 .

[68]  Richard W. Wilson,et al.  Application of high‐rate E×B or magnetron sputtering in the metallization of semiconductor devices , 1976 .

[69]  L. Hartsough Resistivity of bias-sputtered TiW films , 1979 .

[70]  W. Westwood,et al.  Investigation of the Sputtering of Aluminum Using Atomic‐Absorption Spectroscopy , 1970 .

[71]  Bogdan M. Wilamowski,et al.  Temperature properties of the static induction transistor , 1981 .

[72]  J. Greene,et al.  Diffusion enhancement due to low‐energy ion bombardment during sputter etching and deposition , 1980 .

[73]  S. Maniv,et al.  The current‐voltage characteristic of magnetron sputtering systems , 1983 .

[74]  A. Ricard,et al.  Analysis of a reactive sputter ion plating discharge for TiN deposition using optical emission spectroscopy , 1985 .

[75]  Michael Hatzakis,et al.  Single-Step Optical Lift-Off Process , 1980, IBM J. Res. Dev..

[76]  E. L. King,et al.  Self‐Induced Sputtering during Electron‐Beam Evaporation of Ta , 1971 .

[77]  T. Motohiro,et al.  Monte Carlo simulation of the particle transport process in sputter deposition , 1984 .

[78]  J. L. Lamb,et al.  Substrate heating rates for planar and cylindrical-post magnetron sputtering sources , 1984 .

[79]  D. W. Hoffman,et al.  The influence of discharge current on the intrinsic stress in Mo films deposited using cylindrical and planar magnetron sputtering sources , 1985 .

[80]  S. Schiller,et al.  On the use of ring gap discharges for high-rate vacuum coating , 1977 .

[81]  W. Bleakney Ionization Potentials and Probabilities for the Formation of Multiply Charged Ions in Helium, Neon and Argon , 1930 .

[82]  R. Glang,et al.  Handbook of Thin Film Technology , 1970 .

[83]  John A. Thornton,et al.  Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings , 1974 .

[84]  A. K. Suri,et al.  Synthesis of titanium nitrides by activated reactive evaporation , 1980 .

[85]  J. Bindell,et al.  Step coverage from an extended sputtering source , 1974 .

[86]  Y. Igasaki,et al.  Structure and Electrical Properties of Titanium Nitride Films , 1978 .

[87]  J. Coburn,et al.  A Study of the Neutral Species rf Sputtered from Oxide Targets , 1974 .

[88]  D. W. Hoffman,et al.  Modification of evaporated chromium by concurrent ion bombardment , 1980 .

[89]  D. King,et al.  Oxygen adsorption, reconstruction, and thin oxide film formation on clean metal surfaces - Ni, Fe, W and Mo , 1970 .

[90]  C. Aita,et al.  Postdeposition annealing behavior of rf sputtered ZnO films , 1980 .

[91]  D. W. Pashley The nucleation, growth, structure and epitaxy of thin surface films , 1965 .

[92]  D. W. Hoffman,et al.  Internal stresses in sputtered chromium , 1977 .

[93]  S. S. Lau,et al.  Temperature Rise during Film Deposition by rf and dc Sputtering , 1972 .

[94]  A. Mumtaz,et al.  Radio frequency magnetron sputtering of radio frequency biased quartz on a scanning pallet , 1984 .

[95]  R. R. Parsons,et al.  Voltage controlled, reactive planar magnetron sputtering of AlN thin films , 1982 .

[96]  T. Serikawa,et al.  Reactive sputtering characteristics of silicon in an ArN2 mixture , 1986 .

[97]  N. G. Nakhodkin,et al.  Effect of vapour incidence angles on profile and properties of condensed films , 1972 .

[98]  W. Westwood,et al.  Analysis of sputtering discharge by optical and mass spectrometry. I. Platinum and tantalum sputtered in argon , 1973 .

[99]  E. Ritter Deposition of Oxide Films by Reactive Evaporation , 1966 .

[100]  R. Holm,et al.  ESCA studies on changes in surface composition under ion bombardment , 1977 .

[101]  F. Shepherd,et al.  Characteristics of dc magnetron, reactively sputtered TiNx films for diffusion barriers in III–V semiconductor metallization , 1984 .

[102]  S. Ingrey,et al.  Effect of pressure on the properties of reactively sputtered Ta2O5 , 1974 .

[103]  Russell Messier,et al.  Revised structure zone model for thin film physical structure , 1984 .

[104]  H. Kaufman,et al.  Langmuir probe characterization of magnetron operation , 1986 .

[105]  James F. Smith,et al.  Influences of D.C. bias on aluminum films prepared with a high rate magnetron sputtering cathode , 1985 .

[106]  A. G. Blachman Stress and resistivity control in sputtered molybdenum films and comparison with sputtered gold , 1971 .

[107]  D. E. Harrison Sputtering models—A synoptic view , 1983 .

[108]  W. D. Westwood,et al.  Calculation of deposition rates in diode sputtering systems , 1978 .

[109]  H. F. Winters,et al.  The chemisorption of nitrogen at activated sites on a polycrystalline tungsten surface , 1971 .