Potential fMRI correlates of 40-Hz phase locking in primary auditory cortex, thalamus and midbrain

[1]  Maximilian Reiser,et al.  Single-trial coupling of the gamma-band response and the corresponding BOLD signal , 2010, NeuroImage.

[2]  M. Hämäläinen,et al.  BOLD responses in human auditory cortex are more closely related to transient MEG responses than to sustained ones. , 2010, Journal of neurophysiology.

[3]  Hellmuth Obrig,et al.  Stimulus-Induced and State-Dependent Sustained Gamma Activity Is Tightly Coupled to the Hemodynamic Response in Humans , 2009, The Journal of Neuroscience.

[4]  Mitchell Steinschneider,et al.  Coding of repetitive transients by auditory cortex on Heschl's gyrus. , 2009, Journal of neurophysiology.

[5]  J. Mäkelä,et al.  Sources of auditory brainstem responses revisited: Contribution by magnetoencephalography , 2009, Human brain mapping.

[6]  Karl J. Friston,et al.  Frequency-Specific Coupling in the Cortico-Cerebellar Auditory System , 2008, Journal of neurophysiology.

[7]  Krish D. Singh,et al.  Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex , 2008, NeuroImage.

[8]  Fred Tam,et al.  A novel method for integrating MEG and BOLD fMRI signals with the linear convolution model in human primary somatosensory cortex , 2008, Human brain mapping.

[9]  Andrew J Oxenham,et al.  Human Cortical Activity during Streaming without Spectral Cues Suggests a General Neural Substrate for Auditory Stream Segregation , 2007, The Journal of Neuroscience.

[10]  R. Goebel,et al.  Hearing Illusory Sounds in Noise: Sensory-Perceptual Transformations in Primary Auditory Cortex , 2007, The Journal of Neuroscience.

[11]  D. Pandya,et al.  Architectonic analysis of the auditory‐related areas of the superior temporal region in human brain , 2007, The Journal of comparative neurology.

[12]  O. Bertrand,et al.  Effects of Selective Attention on the Electrophysiological Representation of Concurrent Sounds in the Human Auditory Cortex , 2007, The Journal of Neuroscience.

[13]  D. Kleinfeld,et al.  Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal , 2007, The Journal of Neuroscience.

[14]  Larry E. Roberts,et al.  Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus , 2006, NeuroImage.

[15]  Bruce Fischl,et al.  Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: A possible marker for primary cortex and hemispheric differences , 2006, NeuroImage.

[16]  Irina S. Sigalovsky,et al.  Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers , 2006, Hearing Research.

[17]  W. Singer,et al.  Hemodynamic Signals Correlate Tightly with Synchronized Gamma Oscillations , 2005, Science.

[18]  Monica L. Hawley,et al.  Effects of sound bandwidth on fMRI activation in human auditory brainstem nuclei , 2005, Hearing Research.

[19]  Alan H Lockwood,et al.  PET imaging of the 40 Hz auditory steady state response , 2004, Hearing Research.

[20]  Stefan Uppenkamp,et al.  Temporal dynamics of pitch in human auditory cortex , 2004, NeuroImage.

[21]  Seppo P. Ahlfors,et al.  Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates , 2004, NeuroImage.

[22]  A. Dale,et al.  Human posterior auditory cortex gates novel sounds to consciousness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C E Schreiner,et al.  Neural processing of amplitude-modulated sounds. , 2004, Physiological reviews.

[24]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[25]  R Schoonhoven,et al.  A whole head MEG study of the amplitude-modulation-following response: phase coherence, group delay and dipole source analysis , 2003, Clinical Neurophysiology.

[26]  Wilkin Chau,et al.  Determination of activation areas in the human auditory cortex by means of synthetic aperture magnetometry , 2003, NeuroImage.

[27]  T. Dau The importance of cochlear processing for the formation of auditory brainstem and frequency following responses. , 2003, The Journal of the Acoustical Society of America.

[28]  Manbir Singh,et al.  Correlation between BOLD‐fMRI and EEG signal changes in response to visual stimulus frequency in humans , 2003, Magnetic resonance in medicine.

[29]  T. Picton,et al.  Human auditory steady-state responses: Respuestas auditivas de estado estable en humanos , 2003, International journal of audiology.

[30]  Julio Artieda,et al.  Activation of Human Cerebral and Cerebellar Cortex by Auditory Stimulation at 40 Hz , 2002, The Journal of Neuroscience.

[31]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[32]  John G. Neuhoff,et al.  Spatiotemporal Pattern of Neural Processing in the Human Auditory Cortex , 2002, Science.

[33]  M. Harms,et al.  Sound repetition rate in the human auditory pathway: representations in the waveshape and amplitude of fMRI activation. , 2002, Journal of neurophysiology.

[34]  Terence W. Picton,et al.  Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field , 2002, Hearing Research.

[35]  Patrick Berg,et al.  Artifact Correction of the Ongoing EEG Using Spatial Filters Based on Artifact and Brain Signal Topographies , 2002, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[36]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[37]  Xiaoqin Wang,et al.  Temporal and rate representations of time-varying signals in the auditory cortex of awake primates , 2001, Nature Neuroscience.

[38]  P. Chauvel,et al.  Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: a comparison of data in the same patients , 2001, Clinical Neurophysiology.

[39]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[40]  R. Patterson,et al.  Encoding of the temporal regularity of sound in the human brainstem , 2001, Nature Neuroscience.

[41]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[42]  P. Morosan,et al.  Probabilistic Mapping and Volume Measurement of Human Primary Auditory Cortex , 2001, NeuroImage.

[43]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[44]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[45]  M. Scherg,et al.  Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex , 1999, Clinical Neurophysiology.

[46]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[47]  M. Mishkin,et al.  Serial and parallel processing in rhesus monkey auditory cortex , 1997, The Journal of comparative neurology.

[48]  C. Pantev,et al.  Tonotopic organization of the sources of human auditory steady-state responses , 1996, Hearing Research.

[49]  Terence W. Picton,et al.  Frequency‐Specific Audiometry Using Steady‐State Responses , 1996, Ear and hearing.

[50]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[51]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[52]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[53]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[54]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[55]  S Makeig,et al.  Human auditory evoked gamma-band magnetic fields. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Brian R Glasberg,et al.  Derivation of auditory filter shapes from notched-noise data , 1990, Hearing Research.

[57]  M Hämäläinen,et al.  Neuromagnetic steady-state responses to auditory stimuli. , 1989, The Journal of the Acoustical Society of America.

[58]  M Scherg,et al.  A new interpretation of the generators of BAEP waves I-V: results of a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[59]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[60]  S. Makeig,et al.  A 40-Hz auditory potential recorded from the human scalp. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[62]  H. Braak,et al.  The pigment architecture of the human temporal lobe , 1978, Anatomy and Embryology.

[63]  W Rall,et al.  Computed potentials of cortically arranged populations of neurons. , 1977, Journal of neurophysiology.

[64]  Lisa A. de la Mothe,et al.  A comparison of neuron response properties in areas A1 and CM of the marmoset monkey auditory cortex: tones and broadband noise. , 2005, Journal of neurophysiology.

[65]  M. Scherg,et al.  Intracerebral Sources of Human Auditory Steady-State Responses , 2004, Brain Topography.

[66]  R. Weisskoff,et al.  Improved auditory cortex imaging using clustered volume acquisitions , 1999, Human brain mapping.

[67]  O D Creutzfeldt,et al.  Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. , 1966, Electroencephalography and clinical neurophysiology.

[68]  Human Brain Mapping 6:33–41(1998) � Imaging Subcortical Auditory Activity in Humans , 2022 .