Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel. The essential components of such a program are discussed and include: (a) surrogate component selection; (b) the acquisition or estimation of requisite elementary chemical kinetic, thermochemical, and physical property data; (c) the development of accurate predictive chemical kinetic models, together with the measurement of the necessary fundamental laboratory data to validate these mechanisms; and (d) mechanism reduction tools to render the coupled chemistry/flow calculations feasible. In parallel to these efforts, the need exists to develop similarly robust models for fuel injection and spray processes involving multicomponent mixtures of wide distillation character, as well as methodologies to include all of these high fidelity submodels in computationally efficient CFD tools. Near- and longerterm research plans are proposed based on an application target of premixed diesel combustion. In the near term, the recommended surrogate components include n-decane, iso-octane, methylcyclohexane, and toluene. For the longer term, n-hexadecane, heptamethylnonane, n-decylbenzene, and 1-methylnaphthalene are proposed.

[1]  John B. Heywood,et al.  Two-stage ignition in HCCI combustion and HCCI control by fuels and additives , 2003 .

[2]  G. S. Samuelsen,et al.  Development and application of a surrogate distillate fuel , 1989 .

[3]  M. Fairweather,et al.  Predictions of soot formation in turbulent, non-premixed propane flames , 1992 .

[4]  Tiziano Faravelli,et al.  A wide-range modeling study of n-heptane oxidation , 1995 .

[5]  Dennis L. Siebers,et al.  Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization , 1999 .

[6]  J. C. Boettner,et al.  Kinetic study of 1-butene oxidation in a jet-stirred flow reactor , 1989 .

[7]  Heinz Pitsch,et al.  Numerical Investigation of Soot Formation and Oxidation Under Diesel Engine Conditions , 1995 .

[8]  H. Curran,et al.  Experimental and modeling study of methyl cyclohexane pyrolysis and oxidation. , 2006, The journal of physical chemistry. A.

[9]  Mohamed Pourkashanian,et al.  Combustion of Kerosene in Counterflow Diffusion Flames , 2001 .

[10]  Paul C. Miles,et al.  Modeling the effects of EGR and injection pressure on soot formation in a high-speed direct-injection (HSDI) diesel engine using a multi-step phenomenological soot model , 2005 .

[11]  Wei Chen,et al.  A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1. The basic characteristics of HCCI combustion , 2005 .

[12]  I. Glassman,et al.  The oxidation of ethylbenzene near 1060K , 1986 .

[13]  Chih-Jen Sung,et al.  Aerodynamics inside a rapid compression machine , 2006 .

[14]  Anthony J. Marchese,et al.  A Semi-Empirical Reaction Mechanism for n-Heptane Oxidation and Pyrolysis , 1997 .

[15]  Marcos Chaos,et al.  Computational singular perturbation analysis of two-stage ignition of large hydrocarbons. , 2006, The journal of physical chemistry. A.

[16]  Tiziano Faravelli,et al.  Reference components of jet fuels: kinetic modeling and experimental results , 2004 .

[17]  Ulrich Maas,et al.  3D-Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Complex Chemistry , 2004 .

[18]  Tim Edwards,et al.  Ignition and extinction of non-premixed flames of single-component liquid hydrocarbons, jet fuels, and their surrogates , 2007 .

[19]  Celso A. Bertran,et al.  Chemiluminescent Emission Data For Kinetic Modeling Of Ethanol Combustion , 2004 .

[20]  Xiaofeng Yang,et al.  Ignition and combustion simulation in HCCI engines , 2006 .

[21]  R. Fraser,et al.  Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 MPa , 2005 .

[22]  Heinz Pitsch,et al.  Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach , 1996 .

[23]  Kazuya Kawakami,et al.  Fuel Design Concept for Low Emission in Engine Systems 3rd Report: Analysis of Spray Characteristics for Mixed Fuels , 2002 .

[24]  Robert W. Dibble,et al.  A Multi-Zone Model for Prediction of HCCI Combustion and Emissions , 2000 .

[25]  Thomas A. Litzinger,et al.  The Effect of Aromatics and Cycloparaffins on Dl Diesel Emissions , 1989 .

[26]  C. Mueller,et al.  Effects of an ignition-enhancing, diesel-fuel additive on diesel-spray evaporation, mixing, ignition, and combustion , 1998 .

[27]  R. M. Siewert,et al.  Modeling Approaches for Premixed Charge Compression Ignition Combustion , 2005 .

[28]  Tim Edwards,et al.  Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels , 2001 .

[29]  Stanley A Mosier,et al.  Fuel effects on gas turbine combustion systems , 1984 .

[30]  A. Dean,et al.  Combustion Chemistry of Nitrogen , 2000 .

[31]  Philippe Dagaut,et al.  Experimental study of the oxidation of n-heptane in a jet stirred reactor from low to high temperature and pressures up to 40 atm , 1995 .

[32]  Song-Charng Kong,et al.  Application of detailed chemistry and CFD for predicting direct injection HCCI engine combustion and emissions , 2002 .

[33]  C. Westbrook,et al.  Experimental and computational study of nonpremixed ignition of dimethyl ether in counterflow , 2004 .

[34]  R. Walker,et al.  Addition of toluene and ethylbenzene to mixtures of H2 and O2 at 772 K: Part 2: formation of products and determination of kinetic data for H+ additive and for other elementary reactions involved , 2003 .

[35]  J. Nagle,et al.  OXIDATION OF CARBON BETWEEN 1000–2000°C , 1962 .

[36]  Stephen B. Pope,et al.  PDF calculations of turbulent nonpremixed flames with local extinction , 2000 .

[37]  C. Law,et al.  Complex CSP for chemistry reduction and analysis , 2001 .

[38]  William J. Pitz,et al.  Ignition of Isomers of Pentane: An Experimental and Kinetic Modeling Study , 2000 .

[39]  Henning Bockhorn,et al.  Soot Formation in Combustion , 1994 .

[40]  P. Roth,et al.  Shock tube study of the ignition of lean n-heptane/air mixtures at intermediate temperatures and high pressures , 2005 .

[41]  N. Peters,et al.  Investigation of the Ignition Process of Sprays Under Diesel Engine Conditions Using Reduced n-Heptane Chemistry , 1998 .

[42]  Eric G. Eddings,et al.  FORMULATION OF A SURROGATE FOR THE SIMULATION OF JET FUEL POOL FIRES , 2005 .

[43]  Pierre-Alexandre Glaude,et al.  The gas-phase oxidation of n-hexadecane , 2001 .

[44]  Dragos Ciuparu,et al.  Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes , 2003 .

[45]  N. Peters Laminar flamelet concepts in turbulent combustion , 1988 .

[46]  Fengshan Liu,et al.  Numerical and experimental study of an axisymmetric coflow laminar methane–air diffusion flame at pressures between 5 and 40 atmospheres , 2006 .

[47]  Raymond W. Walker,et al.  Addition of toluene and ethylbenzene to mixtures of H2 and O2 at 773 K , 2002 .

[48]  C. Malosse,et al.  Hydroperoxides with zero, one, two or more carbonyl groups formed during the oxidation of N-dodecane , 2001 .

[49]  Kazuhiro Akihama,et al.  Effect of the hydrocarbon molecular structure in diesel fuel on the in-cylinder soot formation and exhaust emissions , 2005 .

[50]  Dennis L. Siebers,et al.  Liquid-Phase Fuel Penetration in Diesel Sprays , 1998 .

[51]  Bradley T. Zigler,et al.  A rapid compression facility study of OH time histories during iso-octane ignition , 2006 .

[52]  Christoph Espey,et al.  The effect of TDC temperature and density on the liquid-phase fuel penetration in a D.I. Diesel engine , 1995 .

[53]  Joshua R. Smith,et al.  A Sequential Fluid-mechanic Chemical-kinetic Model of Propane HCCI Combustion , 2001 .

[54]  F. Dryer,et al.  Burning Velocities of Real Gasoline Fuel at 353 K and 500 K , 2003 .

[55]  Pierre-Alexandre Glaude,et al.  Modeling of the oxidation of large alkenes at low temperature , 2005 .

[56]  Nicholas P. Cernansky,et al.  THE OXIDATION OF JP-8, JET-A, AND THEIR SURROGATES IN THE LOW AND INTERMEDIATE TEMPERATURE REGIME AT ELEVATED PRESSURES , 2007 .

[57]  F. Dryer,et al.  Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry , 2004 .

[58]  P. Dagaut,et al.  Experimental kinetic study of the oxidation of p-xylene in a JSR and comprehensive detailed chemical kinetic modeling , 2005 .

[59]  I. Puri,et al.  An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species , 2006 .

[60]  J. Herbon,et al.  SHOCK TUBE MEASUREMENTS OF ISO-OCTANE IGNITION TIMES AND OH CONCENTRATION TIME HISTORIES , 2002 .

[61]  Dennis L. Siebers,et al.  Measurements of fuel effects on liquid-phase penetration in DI sprays , 1999 .

[62]  M. Ribaucour,et al.  The chemistry of pre-ignition of n-pentane and 1-pentene , 1999 .

[63]  John M. Simmie,et al.  Modeling and Experimental Investigation of Methylcyclohexane Ignition in a Rapid Compression Machine , 2005 .

[64]  N. Peters,et al.  Computational fluid dynamics modelling of non-premixed combustion in direct injection diesel engines , 2000 .

[65]  R. P. Lindstedt,et al.  Detailed Kinetic Modelling of Toluene Combustion , 1996 .

[66]  C. Westbrook,et al.  A Comprehensive Modeling Study of iso-Octane Oxidation , 2002 .

[67]  Edwin Corporan,et al.  Fischer-Tropsch Jet Fuels - Characterization for Advanced Aerospace Applications , 2004 .

[68]  Roland Span,et al.  Short Fundamental Equations of State for 20 Industrial Fluids , 2006 .

[69]  A. Ristori,et al.  The oxidation of n-Hexadecane: experimental and detailed kinetic modeling , 2001 .

[70]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[71]  Heinz Pitsch,et al.  3d Simulation of Di Diesel Combustion and Pollutant Formation Using a Two-Component Reference Fuel , 1999 .

[72]  E. Corporan,et al.  Nonequilibrium combustion model for fuel-rich gas generators , 1994 .

[73]  Pehr Björnbom,et al.  Co-oxidation in the auto-ignition of primary reference fuels and n-heptane/toluene blends , 2005 .

[74]  R. Lindstedt,et al.  A DETAILED CHEMICAL KINETIC MODEL FOR AVIATION FUELS , 1997 .

[75]  H. Ishii,et al.  Visualization Experiment in a Transparent Engine With Pure and Mixed Normal Paraffin Fuels , 2004 .

[76]  Jürgen Warnatz,et al.  Experimental and computational investigation of the structure of a sooting C2H2-O2-Ar flame , 1989 .

[77]  Timothy J. Wallington,et al.  Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether−Air Flames , 2000 .

[78]  Charles J. Mueller,et al.  Effects of Oxygenated Compounds on Combustion and Soot Evolution in a DI Diesel Engine:Broadband Natural Luminosity Imaging , 2002 .

[79]  K. Ikemura Development and application , 1971 .

[80]  Robert J. Santoro,et al.  Development of an advanced, thermally stable, coal-based jet fuel , 2008 .

[81]  Frederick L. Dryer,et al.  The reaction kinetics of dimethyl ether. I: High‐temperature pyrolysis and oxidation in flow reactors , 2000 .

[82]  E. H. Kung,et al.  A PDF method for multidimensional modeling of HCCI engine combustion: effects of turbulence/chemistry interactions on ignition timing and emissions , 2005 .

[83]  C. Westbrook,et al.  A Comprehensive Modeling Study of n-Heptane Oxidation , 1998 .

[84]  R. Minetti,et al.  High pressure auto-ignition and oxidation mechanisms of o-xylene, o-ethyltoluene, and n-butylbenzene between 600 and 900 K , 2000 .

[85]  Experimental and modeling study of the autoignition of 1-hexene/isooctane mixtures at low temperatures , 2006, physics/0603236.

[86]  G. Adomeit,et al.  Self-Ignition of Diesel-Engine Model Fuels At High Pressures , 1997 .

[87]  John M. Simmie,et al.  The influence of fuel structure on combustion as demonstrated by the isomers of heptane: a rapid compression machine study , 2005 .

[88]  Wei Chen,et al.  A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 2. Effect of operating conditions and EGR on HCCI combustion , 2005 .

[89]  Frederick L. Dryer,et al.  The reaction kinetics of dimethyl ether. II: Low‐temperature oxidation in flow reactors , 2000 .

[90]  H. Hiroyasu,et al.  Models for combustion and formation of nitric oxide and soot in direct injection diesel engines. SAE Paper 760129 , 1976 .

[91]  Philippe Dagaut,et al.  High Pressure Oxidation of Liquid Fuels From Low to High Temperature. 1. n-Heptane and iso-Octane. , 1993 .

[92]  Hiroshi Yamasaki,et al.  Recent advances in the combustion of water fuel emulsion , 2002 .

[93]  Daniel L. Flowers,et al.  Effect of Charge Non-uniformity on Heat Release and Emissions in PCCI Engine Combustion , 2006 .

[94]  Dennis N. Assanis,et al.  Analysis of Premixed Charge Compression Ignition Combustion with a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model , 2005 .

[95]  Xin He,et al.  An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions , 2005 .

[96]  Fokion N. Egolfopoulos,et al.  Extinction of premixed flames of practical liquid fuels: Experiments and simulations , 2006 .

[97]  Marcia L. Huber,et al.  Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane , 2004 .

[98]  P. Roth,et al.  Soot particle sizing by LII during shock tubepyrolysis of C6H6 , 2001 .

[99]  R. Minetti,et al.  Oxidation and combustion of low alkylbenzenes at high pressure: Comparative reactivity and auto-ignition , 2000 .

[100]  R. Minetti,et al.  Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel , 2006 .

[101]  R. Malhotra,et al.  Diesel fuel analysis by GC-FIMS: Aromatics, n-paraffins, and isoparaffins , 2001 .

[102]  Pierre-Alexandre Glaude,et al.  Computer-aided design of gas-phase oxidation mechanisms—Application to the modeling of n-heptane and iso-octane oxidation , 1996 .

[103]  Rudolf Maly,et al.  A holistic hydraulic and spray model-liquid and vapor phase penetration of fuel sprays in DI diesel engines , 1999 .

[104]  Thomas J. Bruno,et al.  Method and Apparatus for Precision In‐Line Sampling of Distillate , 2006 .

[105]  A. Ciajolo,et al.  Pyrolysis and oxidation of n-tetradecane during combustion in a diesel engine , 1991 .

[106]  Chung King Law,et al.  On the controlling parameter in the gasification behavior of multicomponent droplets , 1988 .

[107]  Nicholas P. Cernansky,et al.  A flow reactor study of neopentane oxidation at 8 atmospheres: experiments and modeling , 1999 .

[108]  S. Cannon,et al.  Reduced Chemical Kinetic Mechanisms for JP-8 Combustion , 2002 .

[109]  Tsuneaki Ishima,et al.  Effect of Fuel Injection Timing Relative to Ignition Timing on the Natural-Gas Direct-Injection Combustion , 2001 .

[110]  P. Dagaut,et al.  Kinetic modeling of ethanol pyrolysis and combustion , 1992 .

[111]  Michael Frenklach,et al.  Transforming data into knowledge—Process Informatics for combustion chemistry , 2007 .

[112]  T J Wallington,et al.  Automotive fuels and internal combustion engines: a chemical perspective. , 2006, Chemical Society reviews.

[113]  Michael Frenklach,et al.  Reaction mechanism of soot formation in flames , 2002 .

[114]  Frederick L. Dryer,et al.  BURNING VELOCITIES AND A HIGH-TEMPERATURE SKELETAL KINETIC MODEL FOR n-DECANE , 2004 .

[115]  Fabian Mauss,et al.  Comparison of automatic reduction procedures for ignition chemistry , 2002 .

[116]  C. Westbrook,et al.  The development of a detailed chemical kinetic mechanism for diisobutylene and comparison to shock tube ignition times , 2005 .

[117]  Chung King Law,et al.  Combustion and microexplosion of freely falling multicomponent droplets , 1984 .

[118]  Tiziano Faravelli,et al.  Experimental formulation and kinetic model for JP-8 surrogate mixtures , 2002 .

[119]  Tianfeng Lu,et al.  Linear time reduction of large kinetic mechanisms with directed relation graph: N-Heptane and iso-octane , 2006 .

[120]  C. Law,et al.  A directed relation graph method for mechanism reduction , 2005 .

[121]  C. Shaddix,et al.  Analysis of fuel decay routes in the high-temperature oxidation of 1-methylnaphthalene , 1997 .

[122]  Tiziano Faravelli,et al.  Computational and experimental study of JP-8, a surrogate, and its components in counterflow diffusion flames , 2004 .

[123]  Keiya Nishida,et al.  Simultaneous Concentration Measurement of Vapor and Liquid in an Evaporating Diesel Spray , 1993 .

[124]  Frederick L. Dryer,et al.  Chemical Kinetics of Ethanol Oxidation , 2005 .

[125]  K. Pyrolysis Studies of Methylcyclohexane and Oxidation Studies of Methylcyclohexane and Methylcyclohexane / Toluene Blends , 2022 .

[126]  Dennis N. Assanis,et al.  Development and application of a comprehensive soot model for 3D CFD reacting flow studies in a diesel engine , 2005 .

[127]  Nicholas P. Cernansky,et al.  The oxidation of a gasoline surrogate in the negative temperature coefficient region , 2009 .

[128]  A. Ristori,et al.  The combustion of kerosene : Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels , 2006 .

[129]  Sven B Andersson,et al.  Spray-wall interaction: Diesel fuels impinging on a tempered wall , 2006 .

[130]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[131]  Tianfeng Lu,et al.  On the applicability of directed relation graphs to the reduction of reaction mechanisms , 2006 .

[132]  Werner Hentschel,et al.  European diesel research idea: Experimental results from DI diesel engine investigations , 1994 .

[133]  John M. Simmie,et al.  Detailed chemical kinetic models for the combustion of hydrocarbon fuels , 2003 .

[134]  Frederick L. Dryer,et al.  Modeling concepts for larger carbon number alkanes: A partially reduced skeletal mechanism for n-decane oxidation and pyrolysis , 2000 .

[135]  H. Xiang,et al.  Viscosity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane , 2004 .

[136]  R. Yetter,et al.  The Autoignition Behavior of Surrogate Diesel Fuel Mixtures and the Chemical Effects of 2-Ethylhexyl Nitrate (2-EHN) Cetane Improver , 1999 .

[137]  F. Battin‐Leclerc,et al.  Experimental and modeling study of the oxidation of toluene , 2005 .

[138]  V. Warth,et al.  Progress toward a unified detailed kinetic model for the autoignition of alkanes from C4 to C10 between 600 and 1200 K , 2005 .

[139]  Tim Edwards,et al.  USAF supercritical hydrocarbon fuels interests , 1993 .

[140]  A. Ciajolo,et al.  Controlling steps in the low-temperature oxidation of n-heptane and iso-octane , 1998 .

[141]  Heinz Pitsch,et al.  Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow , 2004 .

[142]  J. C. Boettner,et al.  Kerosene combustion at pressures up to 40 atm: Experimental study and detailed chemical kinetic modeling , 1994 .

[143]  D. Lenhert The Oxidation of Large Molecular Weight Hydrocarbons in a Pressurized Flow Reactor , 2005 .

[144]  Rolf D. Reitz,et al.  Comparison of the Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Optical Diagnostic Data for Multi-Mode Combustion in a Heavy-Duty DI Diesel Engine , 2006 .

[145]  Henning Bockhorn,et al.  Soot Formation in Combustion: Mechanisms and Models , 1994 .

[146]  C. Law,et al.  Liquid-phase diffusional resistance in multicomponent droplet gasification , 1988 .

[147]  R. Reitz,et al.  Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations , 2004 .

[148]  P. Dagaut,et al.  Experimental and kinetic modeling study of the oxidation of n-propylbenzene , 2002 .

[149]  Rolf D. Reitz,et al.  Investigating the effect of spray targeting and impingement on diesel engine cold start , 2000 .

[150]  Tiziano Faravelli,et al.  Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures , 2001 .

[151]  Thierry Baritaud,et al.  Macroscopic and Ignition Characteristics of High-Pressure Sprays of Single-Component Fuels , 1998 .

[152]  Marcia L. Huber,et al.  Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decane , 2005 .

[153]  Jean-Louis Delfau,et al.  Chemical Structure of Atmospheric Pressure Premixed n-Decane and Kerosene Flames , 1995 .

[154]  Ronald K. Hanson,et al.  Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures , 2004 .

[155]  N. Peters,et al.  Kinetic modelling of n-decane combustion and autoignition , 2001 .

[156]  Pierre-Alexandre Glaude,et al.  Modeling the oxidation of mixtures of primary reference automobile fuels , 2002 .

[157]  Thomas C. Allison,et al.  Workshop on combustion simulation databases for real transportation fuels , 2003 .

[158]  C. McEnally,et al.  Fuel decomposition and hydrocarbon growth processes for substituted cyclohexanes and for alkenes in nonpremixed flames , 2005 .

[159]  Robert W. Dibble,et al.  A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion , 2001 .

[160]  Dennis N. Assanis,et al.  Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies , 2003 .

[161]  E. M. Bulewicz Combustion , 1964, Nature.

[162]  Jiro Senda,et al.  Fuel Design Concept for Low Emission in Engine Systems 4th Report: Effect of Spray Characteristics of Mixed Fuel on Exhaust Concentrations in Diesel Engine , 2003 .

[163]  M. Reuillon,et al.  Formation of Aromatic Hydrocarbons in Decane and Kerosene Flames at Reduced Pressure , 1994 .

[164]  Michael Frenklach,et al.  Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , 1992 .

[165]  F. Williams,et al.  Turbulent Reacting Flows , 1981 .

[166]  Habib N. Najm,et al.  A CSP-BASED SKELETAL MECHANISM GENERATION PROCEDURE: AUTO-IGNITION AND PREMIXED LAMINAR FLAMES IN N-HEPTANE/AIR MIXTURES , 2006 .

[167]  Enthalpy-based flamelet model for HCCI applied to a rapid compression machine , 2005 .

[168]  C. Lee,et al.  Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR , 2006 .

[169]  N. Marinov,et al.  A detailed chemical kinetic model for high temperature ethanol oxidation , 1999 .

[170]  R. Sivaramakrishnan,et al.  A high pressure model for the oxidation of toluene , 2004 .

[171]  A. S. Cheng,et al.  Investigation of the impact of biodiesel fuelling on NO x emissions using an optical direct injection diesel engine , 2006 .

[172]  Chung King Law,et al.  A d2-Law for Multicomponent Droplet Vaporization and Combustion , 1981 .

[173]  R. A. White,et al.  Liquid and Vapor Fuel Distributions in a Small-Bore High-Speed Direct-Injection Diesel Engine , 2002 .

[174]  Alexander Burcat,et al.  Decane oxidation in a shock tube , 2006 .

[175]  Ronald K. Hanson,et al.  Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures , 2005 .

[176]  M. Cathonnet,et al.  Experimental study and modeling of kerosene oxidation in a jet-stirred flow reactor , 1991 .

[177]  Frederick L. Dryer,et al.  Experimental and Numerical Studies of Ethanol Decomposition Reactions , 2004 .

[178]  Heinz Pitsch,et al.  Systematic Reduction of Large Chemical Mechanisms , 2005 .

[179]  I. Saito,et al.  Diesel quality and molecular structure of bitumen-derived middle distillates , 2004 .

[180]  C. H. Priddin,et al.  Predictions of the flow field and local gas composition in gas turbine combustors , 1979 .

[181]  G. Adomeit,et al.  Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure ☆ , 1997 .

[182]  Horst Hippler,et al.  Kinetic investigations of the reactions of toluene and of p-xylene with molecular oxygen between 1050 and 1400 K , 1998 .

[183]  R. Minetti,et al.  The low-temperature autoignition of alkylaromatics: Experimental study and modeling of the oxidation of n-butylbenzene , 2000 .

[184]  Peter Glarborg,et al.  Hidden interactions—Trace species governing combustion and emissions , 2007 .

[185]  R. Malhotra,et al.  Diesel Fuel Analysis by GC-FIMS: Normal Paraffins, Isoparaffins, and Cycloparaffins , 2001 .

[186]  A. Ristori,et al.  Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modeling , 2002 .

[187]  Thomas J. Bruno,et al.  Improvements in the Measurement of Distillation Curves. 2. Application to Aerospace/Aviation Fuels RP-1 and S-8† , 2006 .

[188]  M. Cathonnet,et al.  Experimental study and kinetic modeling of higher hydrocarbon oxidation in a jet-stirred flow reactor , 1992 .

[189]  Jiro Senda,et al.  Fuel design concept for low emission in engine systems , 2000 .

[190]  M. Ribaucour,et al.  A rapid compression machine investigation of oxidation and auto-ignition of n-Heptane: Measurements and modeling , 1995 .

[191]  R. Johnston,et al.  Laminar burning velocities and Markstein lengths of aromatics at elevated temperature and pressure , 2005 .

[192]  P. Lindstedt Modeling of the chemical complexities of flames , 1998 .

[193]  Heinz Pitsch,et al.  Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels , 2007 .

[194]  Tim Edwards,et al.  "Kerosene" Fuels for Aerospace Propulsion - Composition and Properties , 2002 .

[195]  Chung King Law,et al.  Internal boiling and superheating in vaporizing multicomponent droplets , 1978 .

[196]  Robert W. Dibble,et al.  Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-zone Detailed Kinetics Solver , 2003 .

[197]  A. Peskin The Effects of Different Property Models in a Computational Fluid Dynamics Simulation of a Reciprocating Compressor , 1999 .