All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer

Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields.

[1]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[2]  J. Baumberg,et al.  Sculpting oscillators with light within a nonlinear quantum fluid , 2011, Nature Physics.

[3]  J. Schmiedmayer,et al.  Integrated Mach–Zehnder interferometer for Bose–Einstein condensates , 2013, Nature Communications.

[4]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[5]  I. Carusotto,et al.  Probing microcavity polariton superfluidity through resonant Rayleigh scattering. , 2004, Physical Review Letters.

[6]  M. Wouters,et al.  Quantized vortices in an exciton–polariton condensate , 2008 .

[7]  A. Lemaître,et al.  Interactions in confined polariton condensates. , 2011, Physical review letters.

[8]  P. S. Eldridge,et al.  Quantum reflections and shunting of polariton condensate wave trains: Implementation of a logic and gate , 2013, 1305.5678.

[9]  Onofrio,et al.  Observation of superfluid flow in a bose-einstein condensed Gas , 2000, Physical review letters.

[10]  I. Carusotto,et al.  Artificial gauge field for photons in coupled cavity arrays , 2011, 1104.4071.

[11]  V. G. Sala,et al.  Polariton Superfluids Reveal Quantum Hydrodynamic Solitons , 2011, Science.

[12]  A. Kavokin,et al.  Optical spin hall effect. , 2005, Physical review letters.

[13]  E. Giacobino,et al.  Optical bistability in semiconductor microcavities , 2003, cond-mat/0306473.

[14]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[15]  Francesco Tassone,et al.  Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons , 1999 .

[16]  T. Gao,et al.  Polariton Condensate Transistor Switch , 2012, ArXiv.

[17]  Romuald Houdré,et al.  Exciton–polariton spin switches , 2010 .

[18]  M. Segev,et al.  Conical diffraction and gap solitons in honeycomb photonic lattices , 2006, 2007 Quantum Electronics and Laser Science Conference.

[19]  C. Raman,et al.  Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas , 1999 .

[20]  D. Ballarini,et al.  Control and ultrafast dynamics of a two-fluid polariton switch. , 2012, Physical review letters.

[21]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[22]  J. Bloch,et al.  Half-solitons in a polariton quantum fluid behave like magnetic monopoles , 2012, Nature Physics.

[23]  W. Phillips,et al.  Observation of a superfluid Hall effect , 2012, Proceedings of the National Academy of Sciences.

[24]  A. Lemaître,et al.  Dynamics of microcavity polaritons in the presence of an electron gas , 2006 .

[25]  D. Ritchie,et al.  Exciton polaritons in semiconductor waveguides , 2013 .

[26]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[27]  Y. Léger,et al.  Multistability of a coherent spin ensemble in a semiconductor microcavity. , 2010, Nature materials.

[28]  A. Kloch,et al.  Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter , 2000 .

[29]  P. S. Eldridge,et al.  Polariton ring condensates and sunflower ripples in an expanding quantum liquid , 2012, Physical Review B.

[30]  Masaya Notomi,et al.  Manipulating light with strongly modulated photonic crystals , 2010 .

[31]  M. S. Skolnick,et al.  Angle-resonant stimulated polariton amplifier , 2000, Physical review letters.

[32]  Isabelle Sagnes,et al.  Spontaneous formation and optical manipulation of extended polariton condensates , 2010, 1004.4084.

[33]  Physics of quantum fluids : new trends and hot topics in atomic and polariton condensates , 2013 .

[34]  A. Miard,et al.  Optical parametric oscillation in one-dimensional microcavities , 2013 .

[35]  V. Umansky,et al.  Dephasing in electron interference by a ‘which-path’ detector , 1998, Nature.

[36]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[37]  A. Kavokin,et al.  Observation of Half-Quantum Vortices in an Exciton-Polariton Condensate , 2009, Science.

[38]  Physics of Quantum Fluids , 2013 .

[39]  I. Shelykh,et al.  Polariton polarization-sensitive phenomena in planar semiconductor microcavities , 2009 .

[40]  Observation of bright polariton solitons in a semiconductor microcavity , 2011 .

[41]  V. G. Sala,et al.  All-optical control of the quantum flow of a polariton condensate , 2011, 1103.4885.

[42]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[43]  Mohammad Hafezi,et al.  Robust optical delay lines with topological protection , 2011, 1102.3256.

[44]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[45]  I Bloch,et al.  Experimental realization of strong effective magnetic fields in an optical lattice. , 2011, Physical review letters.

[46]  Alexander Szameit,et al.  Photonic Topological Insulators , 2014, CLEO 2014.

[47]  I. Shelykh,et al.  Polarization multistability of cavity polaritons. , 2006, Physical review letters.

[48]  M. S. Skolnick,et al.  Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities , 2000, Physical review letters.

[49]  D. Ballarini,et al.  All-optical polariton transistor , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[50]  I. Carusotto,et al.  Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates , 2007, 0707.1016.

[51]  Cristiano Ciuti,et al.  Polariton quantum blockade in a photonic dot , 2006 .

[52]  N. Kwong,et al.  Influence of exciton-exciton correlations on the polarization characteristics of polariton amplification in semiconductor microcavities , 2007, 0708.1194.

[53]  P. Bhattacharya,et al.  Solid state electrically injected exciton-polariton laser. , 2013, Physical review letters.

[54]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2009 .

[55]  A. Lemaître,et al.  Realization of a double-barrier resonant tunneling diode for cavity polaritons. , 2013, Physical review letters.

[56]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.