Surface-Supported Robust 2D Lanthanide-Carboxylate Coordination Networks.

Lanthanide-based metal-organic compounds and architectures are promising systems for sensing, heterogeneous catalysis, photoluminescence, and magnetism. Herein, the fabrication of interfacial 2D lanthanide-carboxylate networks is introduced. This study combines low- and variable-temperature scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) experiments, and density functional theory (DFT) calculations addressing their design and electronic properties. The bonding of ditopic linear linkers to Gd centers on a Cu(111) surface gives rise to extended nanoporous grids, comprising mononuclear nodes featuring eightfold lateral coordination. XPS and DFT elucidate the nature of the bond, indicating ionic characteristics, which is also manifest in appreciable thermal stability. This study introduces a new generation of robust low-dimensional metallosupramolecular systems incorporating the functionalities of the f-block elements.

[1]  W. Xu,et al.  Formation of a G-quartet-Fe complex and modulation of electronic and magnetic properties of the Fe center. , 2014, ACS nano.

[2]  J. Bünzli Review: Lanthanide coordination chemistry: from old concepts to coordination polymers , 2014 .

[3]  Weihua Wang,et al.  Two-dimensional lattice of out-of-plane dinuclear iron centers exhibiting Kondo resonance. , 2014, ACS nano.

[4]  Kevin A. Smith,et al.  Redox-active on-surface assembly of metal-organic chains with single-site Pt(II). , 2014, Journal of the American Chemical Society.

[5]  A. Seitsonen,et al.  Five-Vertex Lanthanide Coordination on Surfaces: A Route to Sophisticated Nanoarchitectures and Tessellations , 2014 .

[6]  W. Xu,et al.  Ni-induced supramolecular structural transformation of cytosine on Au(111): from one-dimensional chains to zero-dimensional clusters. , 2014, Chemical communications.

[7]  J. Barth,et al.  Controlled manipulation of gadolinium-coordinated supramolecules by low-temperature scanning tunneling microscopy. , 2014, Nano letters.

[8]  K. Kern,et al.  Bio-inspired nanocatalysts for the oxygen reduction reaction , 2013, Nature Communications.

[9]  A. Floris,et al.  Fine-tuning the electrostatic properties of an alkali-linked organic adlayer on a metal substrate. , 2013, ACS nano.

[10]  W. Xu,et al.  Atomic-scale structures and interactions between the guanine quartet and potassium. , 2013, Chemical communications.

[11]  A. Seitsonen,et al.  Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly , 2013, Proceedings of the National Academy of Sciences.

[12]  S. Abb,et al.  Robust surface nano-architecture by alkali-carboxylate ionic bonding. , 2012, Journal of the American Chemical Society.

[13]  J. Barth,et al.  Two-dimensional short-range disordered crystalline networks from flexible molecular modules. , 2012, ACS nano.

[14]  K. Kern,et al.  Highly adaptable two-dimensional metal-organic coordination networks on metal surfaces. , 2012, Journal of the American Chemical Society.

[15]  H. Steinrück,et al.  Coordination and metalation bifunctionality of Cu with 5,10,15,20-tetra(4-pyridyl)porphyrin: toward a mixed-valence two-dimensional coordination network. , 2012, Journal of the American Chemical Society.

[16]  A. Floris,et al.  Stereoselectivity and electrostatics in charge-transfer Mn- and Cs-TCNQ4 networks on Ag(100) , 2012, Nature Communications.

[17]  M. Persson,et al.  Clean coupling of unfunctionalized porphyrins at surfaces to give highly oriented organometallic oligomers. , 2011, Journal of the American Chemical Society.

[18]  Svetlana V. Eliseeva,et al.  Rare earths: jewels for functional materials of the future , 2011 .

[19]  X. You,et al.  Structures and properties of porous coordination polymers based on lanthanide carboxylate building units. , 2010, Inorganic chemistry.

[20]  J. Barth,et al.  Self-assembly of flexible one-dimensional coordination polymers on metal surfaces. , 2010, Journal of the American Chemical Society.

[21]  K. Kern,et al.  Rational design of two-dimensional nanoscale networks by electrostatic interactions at surfaces. , 2010, ACS nano.

[22]  Kai Wu,et al.  Two-dimensional molecular porous networks constructed by surface assembling , 2009 .

[23]  J. Barth,et al.  High-quality 2D metal-organic coordination network providing giant cavities within mesoscale domains. , 2009, Journal of the American Chemical Society.

[24]  Yeliang Wang,et al.  Metal-organic coordination interactions in Fe-terephthalic acid networks on Cu(100). , 2008, Journal of the American Chemical Society.

[25]  A. Arnau,et al.  Metal-organic honeycomb nanomeshes with tunable cavity size. , 2007, Nano letters.

[26]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[27]  K. Kern,et al.  Surface-template assembly of two-dimensional metal-organic coordination networks. , 2006, The journal of physical chemistry. B.

[28]  S. Cotton Lanthanide and Actinide Chemistry: Cotton/Lanthanide and Actinide Chemistry , 2006 .

[29]  Ga‐Lai Law,et al.  A Highly Porous Luminescent Terbium–Organic Framework for Reversible Anion Sensing , 2006 .

[30]  A. Seitsonen,et al.  Density functional theory analysis of carboxylate-bridged diiron units in two-dimensional metal-organic grids. , 2006, Journal of the American Chemical Society.

[31]  S. Baroni,et al.  Monitoring two-dimensional coordination reactions: directed assembly of co-terephthalate nanosystems on Au(111). , 2006, The journal of physical chemistry. B.

[32]  E. Wang,et al.  A series of three-dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies. , 2005, Inorganic chemistry.

[33]  K. Kern,et al.  Programming supramolecular assembly and chirality in two-dimensional dicarboxylate networks on a Cu(100) surface. , 2005, Nano letters.

[34]  K. Kern,et al.  Deprotonation-Driven Phase Transformations in Terephthalic Acid Self-Assembly on Cu(100) , 2004 .

[35]  A. Seitsonen,et al.  STM Study of Terephthalic Acid Self-Assembly on Au(111): Hydrogen-Bonded Sheets on an Inhomogeneous Substrate † , 2004 .

[36]  K. Kern,et al.  Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems , 2004, Nature materials.

[37]  De-Liang Long,et al.  Non-natural eight-connected solid-state materials: a new coordination chemistry. , 2004, Angewandte Chemie.

[38]  K. Kern,et al.  Hierarchical assembly of two-dimensional homochiral nanocavity arrays. , 2003, Journal of the American Chemical Society.

[39]  K. Kern,et al.  Modular assembly of two-dimensional metal-organic coordination networks at a metal surface. , 2003, Angewandte Chemie.

[40]  K. Kern,et al.  Supramolecular architectures and nanostructures at metal surfaces , 2003 .

[41]  Kristie M. Adams,et al.  Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. , 2003, Journal of the American Chemical Society.

[42]  K. Kern,et al.  Real-time single-molecule imaging of the formation and dynamics of coordination compounds. , 2002, Angewandte Chemie.

[43]  K. Kern,et al.  Direct observation of chiral metal-organic complexes assembled on a Cu100 surface. , 2002, Journal of the American Chemical Society.

[44]  Klaus Kern,et al.  Supramolecular Assemblies of Trimesic Acid on a Cu(100) Surface , 2002 .

[45]  De-Liang Long,et al.  Unprecedented Seven- and Eight-Connected Lanthanide Coordination Networks. , 2001, Angewandte Chemie.

[46]  A. J. Blake,et al.  Lanthanum coordination networks based on unusual five-connected topologies. , 2001, Journal of the American Chemical Society.

[47]  T. Reineke,et al.  From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites , 1999 .

[48]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[51]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[52]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[53]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[54]  J. Deville,et al.  Study of XPS photoemission of some gadolinium compounds , 1991 .

[55]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[56]  A. Simon,et al.  Photoemission von Gd, Tb und den metallreichen Chloriden Gd2Cl3 und Tb2Cl3 / Photoemission of Gd, Tb and, the metal-rich chlorides Gd2Cl3 and Tb2Cl3 , 1982 .

[57]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[58]  J. Barth,et al.  Surface-confined supramolecular coordination chemistry. , 2009, Topics in current chemistry.

[59]  J. Bünzli Benefiting from the unique properties of lanthanide ions. , 2006, Accounts of chemical research.