Pharmacokinetic Analysis of 11C-PBR28 in the Rat Model of Herpes Encephalitis: Comparison with (R)-11C-PK11195

11C-PBR28 is a second-generation translocator protein (TSPO) tracer with characteristics supposedly superior to the most commonly used tracer for neuroinflammation, (R)-11C-PK11195. Despite its use in clinical research, no studies on the imaging properties and pharmacokinetic analysis of 11C-PBR28 in rodent models of neuroinflammation have been published yet. Therefore, this study aimed to evaluate 11C-PBR28 as a tool for detection and quantification of neuroinflammation in preclinical research and to compare its imaging properties with (R)-11C-PK11195. The herpes simplex encephalitis (HSE) model was used for induction of neuroinflammation in male Wistar rats. Six or 7 d after virus inoculation, a dynamic 11C-PBR28 or (R)-11C-PK11195 PET scan with arterial blood sampling was obtained. Pharmacokinetic modeling was performed on the PET data and analyzed using volumes of interest and a voxel-based approach. Volume-of-interest– and voxel-based analysis of 11C-PBR28 images showed overexpression of TSPO in brain regions known to be affected in the HSE rat model. 11C-PBR28 was metabolized faster than (R)-11C-PK11195, with a metabolic half-life in plasma of 5 and 21 min, respectively. Overall, 11C-PBR28 was more sensitive than (R)-11C-PK11195 in detecting neuroinflammation. The binding potential (BPND) of 11C-PBR28 was significantly higher (P < 0.05) in the medulla (176%), pons (146%), midbrain (101%), hippocampus (85%), thalamus (73%), cerebellum (54%), and hypothalamus (49%) in HSE rats than in control rats, whereas (R)-11C-PK11195 showed a higher BPND only in the medulla (32%). The BPND in control animals was not significantly different between tracers, suggesting that the nonspecific binding of both tracers is similar. 11C-PBR28 was more sensitive than (R)-11C-PK11195 in the detection of TSPO overexpression in the HSE rat model, because more brain regions with significantly increased tracer uptake could be found, irrespective of the data analysis method used. These results suggest that 11C-PBR28 should be able to detect more subtle changes in microglial activation in preclinical models of neuroinflammation.

[1]  M. Esiri,et al.  Macrophages and microglia in HSV-1 infected mouse brain , 1995, Journal of Neuroimmunology.

[2]  Sami S Zoghbi,et al.  Synthesis and evaluation in monkey of two sensitive 11C-labeled aryloxyanilide ligands for imaging brain peripheral benzodiazepine receptors in vivo. , 2008, Journal of medicinal chemistry.

[3]  M. Décorps,et al.  Regional response of cerebral blood volume to graded hypoxic hypoxia in rat brain. , 2002, British journal of anaesthesia.

[4]  Roger N Gunn,et al.  Two Binding Sites for [3H]PBR28 in Human Brain: Implications for TSPO PET Imaging of Neuroinflammation , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  R. P. Maguire,et al.  Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  Andreas Zell,et al.  Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. , 2013, Clinical chemistry.

[7]  D. Nutt,et al.  Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. , 2006, Trends in pharmacological sciences.

[8]  Alan A. Wilson,et al.  Neuroinflammation in healthy aging: A PET study using a novel Translocator Protein 18kDa (TSPO) radioligand, [18F]-FEPPA , 2014, NeuroImage.

[9]  A. Saykin,et al.  Fully automated synthesis and initial PET evaluation of [11C]PBR28. , 2009, Bioorganic & medicinal chemistry letters.

[10]  K. Ishiwata,et al.  Evaluation of [11C]CB184 for imaging and quantification of TSPO overexpression in a rat model of herpes encephalitis , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[11]  Roger N Gunn,et al.  Determination of [11C]PBR28 Binding Potential in vivo: A First Human TSPO Blocking Study , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  Roger N Gunn,et al.  An 18-kDa Translocator Protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28 , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  Ronald Boellaard,et al.  Development of a Tracer Kinetic Plasma Input Model for (R)-[11C]PK11195 Brain Studies , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  J. Mann,et al.  PET tracers for the peripheral benzodiazepine receptor and uses thereof. , 2010, Drug discovery today.

[15]  Robert B. Innis,et al.  PET imaging with [11C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat , 2007, Neuroscience Letters.

[16]  Michel Koole,et al.  A Standardized Method for the Construction of Tracer Specific PET and SPECT Rat Brain Templates: Validation and Implementation of a Toolbox , 2015, PloS one.

[17]  Hervé Boutin,et al.  Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  C. Pittenger,et al.  Microglial Dysregulation in Psychiatric Disease , 2013, Clinical & developmental immunology.

[19]  Alessandra Bertoldo,et al.  Microglial Activity in People at Ultra High Risk of Psychosis and in Schizophrenia: An [(11)C]PBR28 PET Brain Imaging Study. , 2015, The American journal of psychiatry.

[20]  Alan A. Wilson,et al.  Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. , 2015, JAMA psychiatry.

[21]  V. Sossi,et al.  [11C]PBR28 PET Imaging is Sensitive to Neuroinflammation in the Aged Rat , 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  Giuseppe Trapani,et al.  Targeting of the translocator protein 18 kDa (TSPO): a valuable approach for nuclear and optical imaging of activated microglia. , 2013, Bioconjugate chemistry.

[24]  B. Gulyás,et al.  Positron Emission Tomography studies with [11C]PBR28 in the Healthy Rodent Brain: Validating SUV as an Outcome Measure of Neuroinflammation , 2015, PloS one.

[25]  M. James,et al.  [11C]-DPA-713 and [18F]-DPA-714 as New PET Tracers for TSPO: A Comparison with [11C]-(R)-PK11195 in a Rat Model of Herpes Encephalitis , 2009, Molecular Imaging and Biology.

[26]  Alessandra Bertoldo,et al.  Kinetic Modeling without Accounting for the Vascular Component Impairs the Quantification of [11C]PBR28 Brain PET Data , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  Kimberly J. Jenko,et al.  A Genetic Polymorphism for Translocator Protein 18 Kda Affects both in Vitro and in Vivo Radioligand Binding in Human Brain to this Putative Biomarker of Neuroinflammation , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  M. James,et al.  Tracers for TSPO: A Comparison with ( 11 C)-(R)-PK11195 in a Rat Model of Herpes Encephalitis , 2009 .

[29]  Robert B. Innis,et al.  Mixed-Affinity Binding in Humans with 18-kDa Translocator Protein Ligands , 2011, The Journal of Nuclear Medicine.

[30]  B. Lopresti,et al.  The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: From pathology to imaging , 2006, Progress in Neurobiology.