Application of FTIR and LA-ICPMS Spectroscopies as a Possible Approach for Biochemical Analyses of Different Rat Brain Regions

Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar; taahmed@qf.org.qa Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; fazle@qu.edu.qa (F.R.); amjad@qu.edu.qa (A.M.S.); kalsaad@qu.edu.qa (K.A.-S.) Forschungszentrum J�lich GmbH, Zentralinstitut f�r Engineering, 52425 Elektronik und Analytik, Germany; v.nischwitz@fz-juelich.de (V.N.); s.kueppers@fz-juelich.de (S.K.) Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha 34110, Qatar; eullah@hbku.edu.qa (E.U.); rmall@hbku.edu.qa (R.M.) Central Laboratories Unit, Qatar University, Doha 2713, Qatar; mohammad.ibrahim@qu.edu.qa Chemical Engineering Program, Texas AM zafarkhanghouri@hotmail.com Centre for Biospectroscopy and the School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; donald.mcnaughton@monash.edu Correspondence: mohamali@hbku.edu.qa

[1]  Lisa M. Miller,et al.  In situ characterization of prion protein structure and metal accumulation in scrapie-infected cells by synchrotron infrared and X-ray imaging , 2005 .

[2]  R. Willinger,et al.  Shear Properties of Brain Tissue over a Frequency Range Relevant for Automotive Impact Situations: New Experimental Results. , 2004, Stapp car crash journal.

[3]  Feride Severcan,et al.  Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study. , 2012, Archives of biochemistry and biophysics.

[4]  Christoph Palm,et al.  Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) , 2010, Journal of the American Society for Mass Spectrometry.

[5]  T. Sadler,et al.  Embryology of neural tube development , 2005, American journal of medical genetics. Part C, Seminars in medical genetics.

[6]  Philip Doble,et al.  Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6-hydroxydopamine induced Parkinsonism mouse models , 2009 .

[7]  P Lasch,et al.  Detection of pathological molecular alterations in scrapie-infected hamster brain by Fourier transform infrared (FT-IR) spectroscopy. , 2000, Biochimica et biophysica acta.

[8]  Richard P. Bazinet,et al.  Polyunsaturated fatty acids and their metabolites in brain function and disease , 2014, Nature Reviews Neuroscience.

[9]  H. Mantsch,et al.  Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components. , 1999, The Journal of investigative dermatology.

[10]  David L. Wetzel,et al.  Analysis of brain tissue by FT-IR microspectroscopy , 1993 .

[11]  Richard Mendelsohn,et al.  Infrared microspectroscopic imaging maps the spatial distribution of exogenous molecules in skin. , 2003, Journal of biomedical optics.

[12]  Philip Doble,et al.  Three-dimensional elemental bio-imaging of Fe, Zn, Cu, Mn and P in a 6-hydroxydopamine lesioned mouse brain. , 2010, Metallomics : integrated biometal science.

[13]  Andreas Matusch,et al.  Bio-imaging of metals in a mouse model of Alzheimer's disease by laser ablation inductively coupled plasma mass spectrometry , 2012 .

[14]  B. Rigas,et al.  Human colon adenocarcinoma cell lines display infrared spectroscopic features of malignant colon tissues. , 1992, Cancer research.

[15]  Alistair Elfick,et al.  Optical Spectroscopy for Noninvasive Monitoring of Stem Cell Differentiation , 2010, Journal of biomedicine & biotechnology.

[16]  Hugh J. Byrne,et al.  Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples. , 2010, The Analyst.

[17]  G. Nicolson,et al.  The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. , 2014, Biochimica et biophysica acta.

[18]  Christoph Palm,et al.  Mass spectrometric imaging (MSI) of metals using advanced BrainMet techniques for biomedical research , 2011 .

[19]  Lisa Miller,et al.  FTIR-microspectroscopy of prion-infected nervous tissue. , 2006, Biochimica et biophysica acta.

[20]  Lisa M. Miller,et al.  Amyloid plaques in PSAPP mice bind less metal than plaques in human Alzheimer's disease , 2009, NeuroImage.

[21]  Francis L Martin,et al.  Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. , 2013, Analytical methods : advancing methods and applications.

[22]  P Lasch,et al.  Mid-IR microspectroscopic imaging of breast tumor tissue sections. , 2002, Biopolymers.

[23]  W. Halliday,et al.  In situ characterization of beta-amyloid in Alzheimer's diseased tissue by synchrotron Fourier transform infrared microspectroscopy. , 1996, Biophysical journal.

[24]  Mark J. Hackett,et al.  A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke , 2016, Neurobiology of Disease.

[25]  Mark J. Tobin,et al.  The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue , 2012, NeuroImage.

[26]  J. O'brien,et al.  Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. , 1965, Journal of lipid research.

[27]  L Svennerholm,et al.  Distribution and fatty acid composition of phosphoglycerides in normal human brain. , 1968, Journal of lipid research.

[28]  J. Doudna,et al.  Metal ions in ribozyme folding and catalysis. , 2000, Current opinion in chemical biology.