Mechanism of ribosome rescue by ArfA and RF2

ArfA rescues ribosomes stalled on truncated mRNAs by recruiting release factor RF2, which normally binds stop codons to catalyze peptide release. We report two 3.2 Å resolution cryo-EM structures – determined from a single sample – of the 70S ribosome with ArfA•RF2 in the A site. In both states, the ArfA C-terminus occupies the mRNA tunnel downstream of the A site. One state contains a compact inactive RF2 conformation. Ordering of the ArfA N-terminus in the second state rearranges RF2 into an extended conformation that docks the catalytic GGQ motif into the peptidyl-transferase center. Our work thus reveals the structural dynamics of ribosome rescue. The structures demonstrate how ArfA ‘senses’ the vacant mRNA tunnel and activates RF2 to mediate peptide release without a stop codon, allowing stalled ribosomes to be recycled. DOI: http://dx.doi.org/10.7554/eLife.23687.001

[1]  A. Korostelev,et al.  Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome , 2013, Proceedings of the National Academy of Sciences.

[2]  F. Zeng,et al.  Peptide release promoted by methylated RF2 and ArfA in nonstop translation is achieved by an induced-fit mechanism , 2016, RNA.

[3]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[4]  James C. Phillips,et al.  Structural basis of co-translational quality control by ArfA and RF2 bound to ribosome , 2017, Nature.

[5]  S. Joseph,et al.  Ribosome Induces a Closed to Open Conformational Change in Release Factor 1. , 2016, Journal of molecular biology.

[6]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[7]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[8]  B. Vestergaard,et al.  Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. , 2001, Molecular cell.

[9]  T. Abo,et al.  Ribosome rescue by Escherichia coli ArfA (YhdL) in the absence of trans‐translation system , 2010, Molecular microbiology.

[10]  V. Ramakrishnan,et al.  Translational termination without a stop codon , 2016, Science.

[11]  C. Hayes,et al.  Proteobacterial ArfA Peptides Are Synthesized from Non-stop Messenger RNAs* , 2012, The Journal of Biological Chemistry.

[12]  Harry F. Noller,et al.  Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes , 1986, Cell.

[13]  C. Hayes,et al.  tmRNA regulates synthesis of the ArfA ribosome rescue factor , 2011, Molecular microbiology.

[14]  H. Noller,et al.  Structural basis for translation termination on the 70S ribosome , 2008, Nature.

[15]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[16]  Jianyu Zhu,et al.  Crystal structure of a translation termination complex formed with release factor RF2 , 2008, Proceedings of the National Academy of Sciences.

[17]  T. Abo,et al.  ArfA recognizes the lack of mRNA in the mRNA channel after RF2 binding for ribosome rescue , 2014, Nucleic acids research.

[18]  Y. Handa,et al.  YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl–tRNA on stalled ribosomes , 2010, Nucleic acids research.

[19]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[20]  T. Abo,et al.  Nascentome Analysis Uncovers Futile Protein Synthesis in Escherichia coli , 2011, PloS one.

[21]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[22]  N Grigorieff,et al.  Frealign: An Exploratory Tool for Single-Particle Cryo-EM. , 2016, Methods in enzymology.

[23]  Yan Chen,et al.  Mechanistic insights into the alternative translation termination by ArfA and RF2 , 2016, Nature.

[24]  Y. Shimizu ArfA recruits RF2 into stalled ribosomes. , 2012, Journal of molecular biology.

[25]  T. Abo,et al.  trans-translation-mediated tight regulation of the expression of the alternative ribosome-rescue factor ArfA in Escherichia coli. , 2011, Genes & genetic systems.

[26]  Mutations in the GTPase Center of Escherichia coli 23S rRNA Indicate Release Factor 2-Interactive Sites , 2002, Journal of bacteriology.

[27]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[28]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005 .

[29]  P. Ivanov,et al.  The complex of tmRNA–SmpB and EF-G on translocating ribosomes , 2012, Nature.

[30]  T. Abo,et al.  ArfA recruits release factor 2 to rescue stalled ribosomes by peptidyl‐tRNA hydrolysis in Escherichia coli , 2012, Molecular microbiology.

[31]  C. Hayes,et al.  Beyond ribosome rescue: tmRNA and co‐translational processes , 2010, FEBS letters.

[32]  T. Steitz,et al.  Structural Basis for the Rescue of Stalled Ribosomes: Structure of YaeJ Bound to the Ribosome , 2012, Science.

[33]  M. Ehrenberg,et al.  The accuracy of codon recognition by polypeptide release factors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[35]  Michael S. Chapman,et al.  Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function , 1995 .

[36]  H. Noller,et al.  Recognition of the amber UAG stop codon by release factor RF1 , 2010, The EMBO journal.

[37]  N. Grigorieff,et al.  Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA–like structural element in the ribosomal decoding center , 2014, Proceedings of the National Academy of Sciences.

[38]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[39]  Harry F. Noller,et al.  Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements , 2014, Cell.

[40]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[41]  A. Kelley,et al.  Decoding in the Absence of a Codon by tmRNA and SmpB in the Ribosome , 2012, Science.

[42]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[43]  Sabine Petry,et al.  Insights into Translational Termination from the Structure of RF2 Bound to the Ribosome , 2008, Science.

[44]  N. Grigorieff,et al.  Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome , 2016, eLife.

[45]  V. Ramakrishnan,et al.  Ribosome-dependent activation of stringent control , 2016, Nature.

[46]  William K. Ridgeway,et al.  X-ray crystal structures of the WT and a hyper-accurate ribosome from Escherichia coli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Dmitri I Svergun,et al.  The SAXS solution structure of RF1 differs from its crystal structure and is similar to its ribosome bound cryo-EM structure. , 2005, Molecular cell.

[48]  W. Wooster,et al.  Crystal structure of , 2005 .

[49]  M. Ehrenberg,et al.  Ribosome rescue by tmRNA requires truncated mRNAs. , 2004, Journal of molecular biology.

[50]  R. Green,et al.  Visualization of codon-dependent conformational rearrangements during translation termination , 2010, Nature Structural &Molecular Biology.

[51]  Peter V. Konarev,et al.  Release Factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies , 2007, Nucleic acids research.

[52]  J. Frank,et al.  A cryo-electron microscopic study of ribosome-bound termination factor RF2 , 2003, Nature.

[53]  Koichi Ito,et al.  Ribosomal protein L11 mutations in two functional domains equally affect release factors 1 and 2 activity , 2006, Molecular microbiology.

[54]  Crystal structure of the 70S ribosome bound with the Q253P mutant form of release factor RF2. , 2014, Structure.

[55]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[56]  Amos Bairoch,et al.  Swiss-Prot: Juggling between evolution and stability , 2004, Briefings Bioinform..

[57]  A. Korostelev Structural aspects of translation termination on the ribosome. , 2011, RNA.

[58]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[59]  N. Grigorieff,et al.  Structures of yeast 80S ribosome-tRNA complexes in the rotated and nonrotated conformations. , 2014, Structure.

[60]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[61]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[62]  W. Craigen,et al.  The function, structure and regulation of E. coli peptide chain release factors. , 1987, Biochimie.

[63]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[64]  Kenneth C. Keiler,et al.  Mechanisms of ribosome rescue in bacteria , 2015, Nature Reviews Microbiology.

[65]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[66]  H. Noller,et al.  Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites , 1989, Cell.

[67]  Richard Bertram,et al.  Simulated-annealing real-space refinement as a tool in model building. , 2002, Acta crystallographica. Section D, Biological crystallography.

[68]  H. Noller,et al.  Crystal Structure of the 70 S Ribosome Bound with the Q 253 P Mutant Form of Release Factor RF 2 , 2013 .

[69]  Sung-Hou Kim,et al.  Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. , 2004, Journal of molecular biology.

[70]  N. Grigorieff,et al.  Author response: Ribosome•RelA structures reveal the mechanism of stringent response activation , 2016 .

[71]  Daniel N. Wilson,et al.  The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis , 2016, Nucleic acids research.