Optimization of the observations of the high angular resolution techniques (adaptive optics and interferometry)

Atmospheric turbulence reduces severely the angular resolution of ground based telescopes and degrades the performances of High Angular Resolution techniques (Interferometry and Adaptive Optics). These observing methods require a better understanding of the behavior of the perturbed wavefronts, more exactly a better knowledge of the atmospheric turbulence model and the associate parameters. Indeed, the performance of an Adaptive Optics system (AO) depends upon the seeing conditions (seeing, outer scale, isoplanatic angle and wavefront coherence time). For interferometric observations, atmospheric turbulence introduces random phase variations above each telescope. The resulting variable optical path difference between the interferometer arms produces fringe displacements across the detector, which results in a blurring of the fringe pattern and therefore a degradation of the fringe contrast observed. We describe, here, a seeing measurement of the spatial coherence outer scale and the wavefront coherence diameter from interferometric data. First results obtained with the GI2T ("Grand Interferometre a 2 Telescopes") interferometer at the Calern Observatory are presented and compared to those measured directly and simultaneously with the GSM ("Generalized Seeing Monitor").

[1]  M. Shao,et al.  Atmospheric phase measurements with the Mark III stellar interferometer. , 1987, Applied optics.

[2]  F Roddier,et al.  Long-baseline Michelson interferometry with large ground-based telescopes operating at optical wavelengths. II. Interferometry at infrared wavelengths , 1984 .

[3]  D. Winker Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence , 1991 .

[4]  Thierry Fusco,et al.  NAOS on-line characterization of turbulence parameters and adaptive optics performance , 2004 .

[5]  David Le Mignant,et al.  Atmospheric turbulence characterization with the Keck adaptive optics systems. I. Open-loop data. , 2003, Applied optics.

[6]  C. Coulman,et al.  Outer scale of turbulence appropriate to modeling refractive-index structure profiles. , 1988, Applied optics.

[7]  Norbert N. Hubin,et al.  Results of AO simulations for ELTs , 2003, SPIE Astronomical Telescopes + Instrumentation.

[8]  D. Buscher,et al.  Interferometric seeing measurements at the La Palma Observatory , 1991 .

[9]  A. Agabi,et al.  Optical parameters relevant for High Angular Resolution at Paranal from GSM instrument and surface layer contribution , 2000 .

[10]  John Davis,et al.  Atmospheric path variations for baselines up to 80m measured with the Sydney University Stellar Interferometer , 1995 .

[11]  Julien Borgnino,et al.  Towards the monitoring of atmospheric turbulence model , 2004 .

[12]  William C. Danchi,et al.  Atmospheric Fluctuations: Empirical Structure Functions and Projected Performance of Future Instruments , 1992 .

[13]  Christopher Dainty,et al.  Zernike expansions for non-Kolmogorov turbulence , 1996, Other Conferences.

[14]  V. V. Voitsekhovich Outer scale of turbulence: comparison of different models , 1995 .

[15]  Rodolphe Conan Modélisation des effets de l'échelle externe de cohérence spatiale du front d'onde pour l'observation à haute résolution angulaire en astronomie : application à l'optique adaptative, à l'interférométrie et aux très grands télescopes , 2000 .

[16]  Julien Borgnino,et al.  Comparison of measurements of the outer scale of turbulence by three different techniques. , 2004, Applied optics.

[17]  Julien Borgnino,et al.  Theoretical spatiotemporal analysis of angle of arrival induced by atmospheric turbulence as observed with the grating scale monitor experiment , 1997 .

[18]  A. Blazit,et al.  Dispersed fringe tracking with the multi-r(0) apertures of the Grand Interféromètre à 2 Télescopes. , 1996, Applied optics.

[19]  J. Mariotti,et al.  Pathlength stability of synthetic aperture telescopes - The case of the 25 CM CERGA interferometer , 1984 .

[20]  F. Roddier V The Effects of Atmospheric Turbulence in Optical Astronomy , 1981 .

[21]  Isabelle Tallon-Bosc,et al.  Estimation of visibility amplitude by optical long-baseline Michelson interferometry with large apertures , 1994 .

[22]  R Conan,et al.  From the grating scale monitor to the generalized seeing monitor. , 2000, Applied optics.