Time-discrete finite element schemes for Maxwell's equations

Nous etudions une famille de discretisation complete des equations de Maxwell. L'approximation en espace utilise les elements d'aretes de Nedelec, bien adaptes aux problemes d'electromagnetisme ; la discretisation en temps est basee sur une famille d'approximations rationnelles de l'exponentielle. Nous montrons des estimations d'erreur pour le schem obtenu

[1]  Pekka Neittaanmäki,et al.  ON TIME-HARMONIC MAXWELL EQUATIONS WITH NONHOMOGENEOUS CONDUCTIVITIES: SOLVABILITY AND FE-APPROXIMATION , 1989 .

[2]  François Dubois,et al.  Discrete vector potential representation of a divergence-free vector field in three dimensional domains: numerical analysis of a model problem , 1990 .

[3]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[4]  James H. Bramble,et al.  Semidiscrete and single step fully discrete approximations for second order hyperbolic equations , 1979 .

[5]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[6]  Raj Mittra,et al.  Radar cross section computation of inhomogeneous scatterers using edge‐based finite element methods in frequency and time domains , 1993 .

[7]  Raj Mittra,et al.  Use of Whitney's edge and face elements for efficient finite element time domain solution of Maxwell's equations , 1994 .

[8]  C. Makridakis On mixed finite element methods for linear elastodynamics , 1992 .

[9]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  J. C. Ndlec lments finis mixtes incompressibles pour l'quation de Stokes dans ?3 , 1982 .

[12]  V. Girault,et al.  Incompressible Finite Element Methods for Navier-Stokes Equations with Nonstandard Boundary Conditions in R 3 , 1988 .

[13]  V. Girault,et al.  Curl-conforming finite element methods for Navier-Stokes equations with non-standard boundary conditions in ℜ3 , 1990 .

[14]  Peter Monk,et al.  An analysis of Ne´de´lec's method for the spatial discretization of Maxwell's equations , 1993 .

[15]  P. Raviart,et al.  Study of an implicit scheme for integrating Maxwell's equations , 1980 .

[16]  A. Bossavit Solving Maxwell equations in a closed cavity, and the question of 'spurious modes' , 1990 .