Computational Optimization and Applications Manuscript No. on an Enumerative Algorithm for Solving Eigenvalue Complementarity Problems
暂无分享,去创建一个
Hanif D. Sherali | Joaquim Júdice | Maria Antónia Forjaz | Luís M. Fernandes | J. Júdice | H. Sherali | L. Fernandes | M. Forjaz | Joaquim | Hanif | D. Sherali
[1] M. Seetharama Gowda,et al. On the finiteness of the cone spectrum of certain linear transformations on Euclidean Jordan algebras , 2009 .
[2] David Kendrick,et al. GAMS, a user's guide , 1988, SGNM.
[3] Joaquim Júdice,et al. Efficient DC programming approaches for the asymmetric eigenvalue complementarity problem , 2013, Optim. Methods Softw..
[4] Samir Adly,et al. A nonsmooth algorithm for cone-constrained eigenvalue problems , 2011, Comput. Optim. Appl..
[5] Francisco Marcellán,et al. A new numerical quadrature formula on the unit circle , 2007, Numerical Algorithms.
[6] Joaquim Júdice,et al. A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem , 2012, Comput. Optim. Appl..
[7] A. Seeger. Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions , 1999 .
[8] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[9] Nikolaos V. Sahinidis,et al. Exact Algorithms for Global Optimization of Mixed-Integer Nonlinear Programs , 2002 .
[10] Joaquim J. Júdice,et al. The directional instability problem in systems with frictional contacts , 2004 .
[11] Hanif D. Sherali,et al. On the asymmetric eigenvalue complementarity problem , 2009, Optim. Methods Softw..
[12] Alberto Seeger,et al. Quadratic Eigenvalue Problems under Conic Constraints , 2011, SIAM J. Matrix Anal. Appl..
[13] Joaquim Júdice,et al. The symmetric eigenvalue complementarity problem , 2003, Math. Comput..
[14] Bela Martos,et al. Nonlinear programming theory and methods , 1977 .
[15] Alberto Seeger,et al. On eigenvalues induced by a cone constraint , 2003 .
[16] Mokhtar S. Bazaraa,et al. Nonlinear Programming: Theory and Algorithms , 1993 .
[17] Alberto Seeger,et al. Local minima of quadratic forms on convex cones , 2009, J. Glob. Optim..
[18] Joaquim Júdice,et al. On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm , 2008, Numerical Algorithms.
[19] Hanif D. Sherali,et al. The eigenvalue complementarity problem , 2007, Comput. Optim. Appl..
[20] Golub Gene H. Et.Al. Matrix Computations, 3rd Edition , 2007 .
[21] Richard W. Cottle,et al. Linear Complementarity Problem , 2009, Encyclopedia of Optimization.
[22] K. Lommatzsch. Martos, B., Nonlinear Programming Theory and Methods, 280 S., Budapest. Akadémiai Kiadó. 1975. Ft 180,- , 1976 .
[23] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[24] Hanif D. Sherali,et al. A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..
[25] Hector A. Rosales-Macedo. Nonlinear Programming: Theory and Algorithms (2nd Edition) , 1993 .
[26] Alberto Seeger,et al. ON CARDINALITY OF PARETO SPECTRA , 2011 .
[27] Silvério S. Rosa,et al. Variational Inequality Formulation of the Asymmetric Eigenvalue Complementarity Problem and its Solution By Means of Gap Functions , 2011 .
[28] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[29] Michael A. Saunders,et al. MINOS 5. 0 user's guide , 1983 .
[30] Alberto Seeger,et al. Cone-constrained eigenvalue problems: theory and algorithms , 2010, Comput. Optim. Appl..
[31] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[32] S. Dirkse,et al. The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .