ABCC1 and glutathione metabolism limit the efficacy of BCL-2 inhibitors in acute myeloid leukemia

[1]  P. Wirapati,et al.  BCL-XL is crucial for progression through the adenoma-to-carcinoma sequence of colorectal cancer , 2021, Cell Death & Differentiation.

[2]  Lili Tian,et al.  Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance , 2021, Frontiers in Pharmacology.

[3]  R. Maia,et al.  UPDATE ON DRUG TRANSPORTER PROTEINS IN ACUTE MYELOID LEUKEMIA: PATHOLOGICAL IMPLICATION AND CLINICAL SETTING. , 2021, Critical reviews in oncology/hematology.

[4]  M. Warmoes,et al.  Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and re-sensitizes acute myeloid leukemia to BCL-2 inhibition , 2020, Haematologica.

[5]  A. Roberts Therapeutic development and current uses of BCL-2 inhibition. , 2020, Hematology. American Society of Hematology. Education Program.

[6]  Annette S. Kim,et al.  Reduced Mitochondrial Apoptotic Priming Drives Resistance to BH3 Mimetics in Acute Myeloid Leukemia. , 2020, Cancer cell.

[7]  D. Bottomly,et al.  Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia , 2020, Nature Cancer.

[8]  J. Zuber,et al.  Multilayered VBC score predicts sgRNAs that efficiently generate loss-of-function alleles , 2020, Nature Methods.

[9]  T. Aittokallio,et al.  SynergyFinder 2.0: visual analytics of multi-drug combination synergies , 2020, Nucleic Acids Res..

[10]  Zhe-Sheng Chen,et al.  Venetoclax, a BCL-2 Inhibitor, Enhances the Efficacy of Chemotherapeutic Agents in Wild-Type ABCG2-Overexpression-Mediated MDR Cancer Cells , 2020, Cancers.

[11]  M. Konopleva,et al.  Venetoclax for AML: changing the treatment paradigm. , 2019, Blood advances.

[12]  Catherine Lai,et al.  Recent drug approvals for acute myeloid leukemia , 2019, Journal of Hematology & Oncology.

[13]  S. Cheung,et al.  The ATP-binding cassette transporter ABCF1 is a hepatic oncofetal protein that promotes chemoresistance, EMT and cancer stemness in hepatocellular carcinoma. , 2019, Cancer letters.

[14]  Andrew B. Leber,et al.  Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality. , 2019, Cancer cell.

[15]  Neel S. Madhukar,et al.  Imipridone ONC212 activates orphan G protein-coupled receptor GPR132 and integrated stress response in acute myeloid leukemia , 2019, Leukemia.

[16]  JinWang,et al.  A Genome-wide Haploid Genetic Screen Identifies Regulators of Glutathione Abundance and Ferroptosis Sensitivity , 2019, Cell reports.

[17]  A. Letai,et al.  Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. , 2019, Blood.

[18]  Austin E. Gillen,et al.  Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia , 2018, Nature Medicine.

[19]  A. Chatterjee,et al.  The multifaceted role of glutathione S-transferases in cancer. , 2018, Cancer letters.

[20]  Beth Wilmot,et al.  Functional Genomic Landscape of Acute Myeloid Leukemia , 2018, Nature.

[21]  M. Konopleva,et al.  Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid leukemia , 2018, American journal of hematology.

[22]  M. Gottesman,et al.  Revisiting the role of ABC transporters in multidrug-resistant cancer , 2018, Nature Reviews Cancer.

[23]  Marina Konopleva,et al.  Synthetic Lethality of Combined Bcl-2 Inhibition and p53 Activation in AML: Mechanisms and Superior Antileukemic Efficacy. , 2017, Cancer cell.

[24]  Hamid Bolouri,et al.  The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions , 2017, Nature Medicine.

[25]  Antoine de Weck,et al.  Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening , 2017, Cell.

[26]  M. Konopleva,et al.  Treated secondary acute myeloid leukemia: a distinct high-risk subset of AML with adverse prognosis. , 2017, Blood advances.

[27]  Ann E. Sizemore,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, Nature Genetics.

[28]  B. George,et al.  ATP-binding casette transporter expression in acute myeloid leukemia: association with in vitro cytotoxicity and prognostic markers. , 2017, Pharmacogenomics.

[29]  A. Strasser,et al.  The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models , 2016, Nature.

[30]  H. Dombret,et al.  An update of current treatments for adult acute myeloid leukemia. , 2016, Blood.

[31]  John Calvin Reed,et al.  Inhibition of Mcl-1 with the pan-Bcl-2 family inhibitor (-)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia. , 2015, Blood.

[32]  W. Curran,et al.  Small-Molecule Bcl2 BH4 Antagonist for Lung Cancer Therapy. , 2015, Cancer cell.

[33]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[34]  R. Majeti,et al.  Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia , 2015, Nature Medicine.

[35]  B. van Steensel,et al.  Easy quantitative assessment of genome editing by sequence trace decomposition , 2014, Nucleic acids research.

[36]  A. Yu,et al.  ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. , 2014, Current pharmaceutical design.

[37]  G. Szakács,et al.  ABCG2 is not able to catalyze glutathione efflux and does not contribute to GSH-dependent collateral sensitivity , 2013, Front. Pharmacol..

[38]  Matthew E. Ritchie,et al.  Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. , 2013, Cancer cell.

[39]  L. Lam,et al.  ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets , 2013, Nature Medicine.

[40]  A. Oakley Glutathione transferases: a structural perspective , 2011, Drug metabolism reviews.

[41]  Christof Fellmann,et al.  Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi , 2011, Nature Biotechnology.

[42]  L. O’Driscoll,et al.  Membrane transport proteins in human melanoma: associations with tumour aggressiveness and metastasis , 2010, British Journal of Cancer.

[43]  J. Fletcher,et al.  ABC transporters in cancer: more than just drug efflux pumps , 2010, Nature Reviews Cancer.

[44]  Vasilis Vasiliou,et al.  Human ATP-binding cassette (ABC) transporter family , 2009, Human Genomics.

[45]  Balázs Sarkadi,et al.  The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). , 2008, Drug discovery today.

[46]  E. D. de Vries,et al.  ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. , 2007, Critical reviews in oncology/hematology.

[47]  P. Sonneveld,et al.  CD34-related coexpression of MDR1 and BCRP indicates a clinically resistant phenotype in patients with acute myeloid leukemia (AML) of older age , 2007, Annals of Hematology.

[48]  Zhe-Sheng Chen,et al.  ABCC10, ABCC11, and ABCC12 , 2007, Pflügers Archiv - European Journal of Physiology.

[49]  G. Szakács,et al.  Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. , 2006, Physiological reviews.

[50]  S. Cole,et al.  Transport of glutathione and glutathione conjugates by MRP1. , 2006, Trends in pharmacological sciences.

[51]  M. Gottesman,et al.  Targeting multidrug resistance in cancer , 2006, Nature Reviews Drug Discovery.

[52]  N. Ballatori,et al.  Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. , 2005, Toxicology and applied pharmacology.

[53]  John N Weinstein,et al.  Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. , 2004, Cancer cell.

[54]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[55]  M. Essodaigui,et al.  Kinetic analysis of calcein and calcein-acetoxymethylester efflux mediated by the multidrug resistance protein and P-glycoprotein. , 1998, Biochemistry.

[56]  Jos H. Beijnen,et al.  Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein , 1997, Nature Medicine.

[57]  V. Gekeler,et al.  The leukotriene LTD4 receptor antagonist MK571 specifically modulates MRP associated multidrug resistance. , 1995, Biochemical and biophysical research communications.

[58]  B. Sarkadi,et al.  Calcein accumulation as a fluorometric functional assay of the multidrug transporter. , 1994, Biochimica et biophysica acta.

[59]  A. Duncan,et al.  Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. , 1992, Science.

[60]  C. I. Bliss THE TOXICITY OF POISONS APPLIED JOINTLY1 , 1939 .

[61]  Roberta Riccioni,et al.  Deregulation of apoptosis in acute myeloid leukemia. , 2007, Haematologica.

[62]  J. Hayes,et al.  Glutathione transferases. , 2005, Annual review of pharmacology and toxicology.