Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II–VI and III–V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessity to improve their stability in environmental conditions. The defect tolerance of lead halide perovskites offers an impetus to search for similar attributes in other related heavy metal-free compounds. We discuss the origins of the significantly blue-shifted emission from CsPbBr3 nanocrystals and the synthetic strategies toward fabrication of stable perovskite nanocrystal materials with emission in the red and infrared parts of the optical spectrum, which are related to fabrication of mixed cation compounds guided by Goldschmidt tolerance factor considerations. We conclude with the view on perspectives of use of the colloidal perovskite nanocrystals for applications in backlighting of liquid-crystal TV displays.

[1]  Emad Oveisi,et al.  CsPbBr3 QD/AlOx Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. , 2017, Angewandte Chemie.

[2]  C. Zhi,et al.  Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. , 2017, Angewandte Chemie.

[3]  A. Sinitskii,et al.  Synthesis of Cesium Lead Halide Perovskite Quantum Dots , 2017 .

[4]  Liang Li,et al.  Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. , 2017, Angewandte Chemie.

[5]  Daqin Chen,et al.  Full-Spectral Fine-Tuning Visible Emissions from Cation Hybrid Cs1-mFAmPbX3 (X = Cl, Br, and I, 0 ≤ m ≤ 1) Quantum Dots. , 2017, ACS applied materials & interfaces.

[6]  Zhenda Lu,et al.  Surface passivation of mixed-halide perovskite CsPb(BrxI1-x)3 nanocrystals by selective etching for improved stability. , 2017, Nanoscale.

[7]  Z. Yin,et al.  Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes , 2017, Nature Communications.

[8]  Zhigang Zang,et al.  Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX3 /ZnS Quantum Dot Heterostructure. , 2017, Small.

[9]  Yuguo Tang,et al.  Synthesis and Stabilization of Colloidal Perovskite Nanocrystals by Multidentate Polymer Micelles. , 2017, ACS applied materials & interfaces.

[10]  L. Kong,et al.  Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. , 2017, Angewandte Chemie.

[11]  Yong Peng,et al.  Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. , 2017, Chemical communications.

[12]  Angshuman Nag,et al.  Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping , 2017 .

[13]  M. Kanatzidis,et al.  Strong Electron–Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) , 2017 .

[14]  Feng Zhang,et al.  Colloidal Synthesis of Air-Stable CH3NH3PbI3 Quantum Dots by Gaining Chemical Insight into the Solvent Effects , 2017 .

[15]  Antonietta Guagliardi,et al.  Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals , 2017, ACS nano.

[16]  P. Woodward,et al.  Cs1–xRbxPbCl3 and Cs1–xRbxPbBr3 Solid Solutions: Understanding Octahedral Tilting in Lead Halide Perovskites , 2017 .

[17]  M. Kovalenko,et al.  Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry , 2017 .

[18]  H. Zeng,et al.  All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. , 2017, Small.

[19]  Biwu Ma,et al.  Highly Luminescent Bulk Quantum Materials Based on Zero-Dimensional Organic Tin Halide Perovskites , 2017, 1702.07200.

[20]  Antonietta Guagliardi,et al.  Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals , 2017, ACS nano.

[21]  M. Nazeeruddin,et al.  Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface , 2017 .

[22]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[23]  Haiyang Li,et al.  Embedding Perovskite Nanocrystals into a Polymer Matrix for Tunable Luminescence Probes in Cell Imaging , 2017 .

[24]  Qian Wang,et al.  Structural Stabilities and Electronic Properties of High-Angle Grain Boundaries in Perovskite Cesium Lead Halides , 2017 .

[25]  P. Kamat,et al.  Au–CsPbBr3 Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals , 2017 .

[26]  Lin-wang Wang,et al.  High Defect Tolerance in Lead Halide Perovskite CsPbBr3. , 2017, The journal of physical chemistry letters.

[27]  Liduo Wang,et al.  Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03542f Click here for additional data file. , 2016, Chemical science.

[28]  J. Jasieniak,et al.  Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. , 2017, Chemical communications.

[29]  Liwei Lin,et al.  Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. , 2016, ACS applied materials & interfaces.

[30]  Yu Tong,et al.  Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets. , 2016, ACS nano.

[31]  L. Etgar,et al.  Inorganic and Hybrid Organo‐Metal Perovskite Nanostructures: Synthesis, Properties, and Applications , 2016 .

[32]  William W. Yu,et al.  Efficient and Stable White LEDs with Silica‐Coated Inorganic Perovskite Quantum Dots , 2016, Advanced materials.

[33]  F. Giustino,et al.  Toward Lead-Free Perovskite Solar Cells , 2016 .

[34]  I. Infante,et al.  Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals , 2016 .

[35]  Y. Qi,et al.  Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis , 2016 .

[36]  Jasmina A. Sichert,et al.  Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications , 2016 .

[37]  X. Ren,et al.  20‐mm‐Large Single‐Crystalline Formamidinium‐Perovskite Wafer for Mass Production of Integrated Photodetectors , 2016 .

[38]  Yongtian Wang,et al.  In Situ Fabrication of Halide Perovskite Nanocrystal‐Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights , 2016, Advanced materials.

[39]  Jasmina A. Sichert,et al.  Tuning the Optical Properties of Perovskite Nanoplatelets through Composition and Thickness by Ligand‐Assisted Exfoliation , 2016, Advanced materials.

[40]  Nana Wang,et al.  Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells , 2016, Nature Photonics.

[41]  Zhenyu Yang,et al.  Amine‐Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light‐Emitting Diodes , 2016 .

[42]  Verena A. Hintermayr,et al.  Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication. , 2016, Angewandte Chemie.

[43]  K. Jacobsen,et al.  Band Gap Tuning and Defect Tolerance of Atomically Thin Two-Dimensional Organic-Inorganic Halide Perovskites. , 2016, The journal of physical chemistry letters.

[44]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[45]  J. Pérez‐Prieto,et al.  The Luminescence of CH3 NH3 PbBr3 Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced. , 2016, Small.

[46]  M. Kovalenko,et al.  Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes , 2016, Nano letters.

[47]  Aziz Genç,et al.  Polymer-Enhanced Stability of Inorganic Perovskite Nanocrystals and Their Application in Color Conversion LEDs. , 2016, ACS applied materials & interfaces.

[48]  Xueming Li,et al.  Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability. , 2016, Angewandte Chemie.

[49]  M. Loi,et al.  Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films , 2016 .

[50]  P. Ghosh,et al.  Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths. , 2016, Nano letters.

[51]  Ru‐Shi Liu,et al.  Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display. , 2016, Angewandte Chemie.

[52]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[53]  Haizheng Zhong,et al.  Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices , 2016, Chemical science.

[54]  S. Mhaisalkar,et al.  Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles. , 2016, Chemical communications.

[55]  N. Zhu,et al.  Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in "Waterless" Toluene. , 2016, Journal of the American Chemical Society.

[56]  Ayan A. Zhumekenov,et al.  Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length , 2016 .

[57]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[58]  R. Palgrave,et al.  On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.

[59]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[60]  F. Giustino,et al.  Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. , 2016, The journal of physical chemistry letters.

[61]  Gang Li,et al.  Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties , 2016, Advanced materials.

[62]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[63]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[64]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[65]  J. Pérez‐Prieto,et al.  Organic-inorganic and all-inorganic lead halide nanoparticles [Invited]. , 2016, Optics express.

[66]  Peng Gao,et al.  A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.

[67]  Rainer F. Mahrt,et al.  Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure , 2016, ACS nano.

[68]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[69]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[70]  Liberato Manna,et al.  X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water , 2015, ACS nano.

[71]  Y. Qi,et al.  Thermal degradation of CH 3 NH 3 PbI 3 perovskite into NH 3 and CH 3 I gases observed by coupled thermogravimetry-mass spectrometry analysis , 2016 .

[72]  Liduo Wang,et al.  junction of formamidinium lead iodide perovskites for enhanced near-infrared emission † , 2016 .

[73]  Abhishek Swarnkar,et al.  Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. , 2015, Angewandte Chemie.

[74]  M. Saidaminov,et al.  Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth. , 2015, Chemical communications.

[75]  Manas R. Parida,et al.  Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. , 2015, The journal of physical chemistry letters.

[76]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[77]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[78]  Yu Tong,et al.  Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. , 2015, Nano letters.

[79]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[80]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[81]  He Huang,et al.  Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature , 2015, Advanced science.

[82]  Alain Goriely,et al.  High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization , 2015, Nature Communications.

[83]  J. Pérez‐Prieto,et al.  Organometal Halide Perovskites: Bulk Low‐Dimension Materials and Nanoparticles , 2015 .

[84]  Pooja Tyagi,et al.  Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. , 2015, The journal of physical chemistry letters.

[85]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[86]  Haizheng Zhong,et al.  Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. , 2015, ACS nano.

[87]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[88]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[89]  Haizheng Zhong,et al.  Aggregation‐Induced Emission Features of Organometal Halide Perovskites and Their Fluorescence Probe Applications , 2015 .

[90]  A. Walsh,et al.  Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites , 2014, Angewandte Chemie.

[91]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[92]  Oleksandr Voznyy,et al.  Materials processing routes to trap-free halide perovskites. , 2014, Nano letters.

[93]  F. Giustino,et al.  Steric engineering of metal-halide perovskites with tunable optical band gaps , 2014, Nature Communications.

[94]  Jin Young Kim,et al.  Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells , 2014 .

[95]  Olga Malinkiewicz,et al.  Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. , 2014, Journal of the American Chemical Society.

[96]  Shuchi Gupta,et al.  25th Anniversary Article: Ion Exchange in Colloidal Nanocrystals , 2013, Advanced materials.

[97]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[98]  Zhifu Liu,et al.  Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection , 2013 .

[99]  Hilmi Volkan Demir,et al.  Color science of nanocrystal quantum dots for lighting and displays , 2013 .

[100]  N. Weiden,et al.  207 Pb and 205 T 1 NMR on Perovskite Type Crystals APbX 3 ( A = Cs , TI , X = Br , I ) , 2013 .

[101]  K. Kimoto,et al.  Spontaneous formation of wurzite-CdS/zinc blende-CdTe heterodimers through a partial anion exchange reaction. , 2011, Journal of the American Chemical Society.

[102]  R. E. Schaak,et al.  ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles. , 2009, Journal of the American Chemical Society.

[103]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[104]  D. Trots,et al.  High-temperature structural evolution of caesium and rubidium triiodoplumbates , 2008 .

[105]  Andrey L. Rogach,et al.  Semiconductor Nanocrystal Quantum Dots , 2008 .

[106]  A. Rogach,et al.  Infrared-emitting colloidal nanocrystals: synthesis, assembly, spectroscopy, and applications. , 2007, Small.

[107]  Alan V. Hewat Structural Phase Transitions , 2006 .

[108]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[109]  M. Nikl,et al.  Luminescent CsPbI3 and Cs4PbI6 Aggregates in Annealed CsI:Pb Crystals , 2001 .

[110]  A. Weiss,et al.  Phase Diagrams of Quasibinary Systems of the Type: ABX3 — A′BX3; ABX3 — AB′X3, and ABX3 — ABX′3; X = Halogen , 1992 .

[111]  A. Weiss,et al.  207Pb and 205Tl NMR on Perovskite Type Crystals APbX3 (A = Cs, Tl, X = Br, I) , 1987 .

[112]  M. Hidaka,et al.  Structural Phase Transition of CsPbCl3 below Room Temperature , 1983 .

[113]  J. Donaldson,et al.  Luminescence and electrical conductivity of CsSnBr3, and related phases , 1981 .

[114]  D. Weber CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure , 1978 .

[115]  R. Armstrong Pure nuclear quadrupole resonance studies of structural phase transitions , 1975 .

[116]  G. Shirane,et al.  Neutron-scattering study on phase transitions of CsPb Cl 3 , 1974 .

[117]  W. G. Fisher,et al.  Crystal preparation and properties of cesium tin(II) trihalides , 1974 .

[118]  S. Hirotsu Experimental Studies of Structural Phase Transitions in CsPbCl3 , 1971 .

[119]  J. Donaldson,et al.  The Mössbauer effect in tin(II) compounds. Part XI. The spectra of cubic trihalogenostannates(II) , 1971 .

[120]  N. A. Sörensen,et al.  Crystal Structure and Phase Transition of Cesium Trichlorostannate(II). , 1970 .

[121]  R. White,et al.  EPR Study of the Structure of CsPbCl3 , 1969 .

[122]  S. Hirotsu,et al.  Crystal growth and phase transitions of CsPbCl3 , 1969 .

[123]  H. Unoki,et al.  A new structural phase transition in CsPbCl3 , 1969 .

[124]  N. Tovborg‐Jensen NQR Investigation of Phase Transitions in Cesium Plumbochloride , 1969 .

[125]  R. Shapiro,et al.  A Ferroelectric Chloride of Perowskite Type. Crystal Structure of CsGeCl3. , 1965 .

[126]  C. K. Møller Crystal Structure and Photoconductivity of Cæsium Plumbohalides , 1958 .

[127]  C. K. Møller A Phase Transition in Cæsium Plumbochloride , 1957 .

[128]  H. L. Wells Über die Cäsium‐ und Kalium‐Bleihalogenide , 1893 .