Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps

It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappaWL) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the Counts in Cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey (DES) Science Verification data over 139 deg2. We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modeled by a lognormal PDF convolved with Poisson noise at angular scales from 10'- 40'(corresponding to physical scales of 3-10 Mpc). We note that as kappaWL is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappaWL distribution is well modeled by a lognormal PDF convolved with Gaussian shape noise at scales between 10'and 20', with a best-fit chi2/DOF of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07 respectively, at a scale of 10'. Above 20'a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.

[1]  Y. Bai,et al.  The Astronomical Journal , 2019 .

[2]  David E. Trilling,et al.  The Astrophysical Journal Supplement Series , 2019 .

[3]  D. Gerdes,et al.  Inference from the Small Scales of Cosmic Shear with Current and Future Dark Energy Survey Data , 2016, 1608.01838.

[4]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[5]  C. B. D'Andrea,et al.  Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data , 2016, 1603.05040.

[6]  F. Abdalla,et al.  Improving lognormal models for cosmological fields , 2016, 1602.08503.

[7]  R. Nichol,et al.  THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA , 2016, The Astrophysical Journal Supplement Series.

[8]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[9]  F. Castander,et al.  A new method to measure galaxy bias by combining the density and weak lensing fields , 2016, 1601.00160.

[10]  C. B. D'Andrea,et al.  Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing , 2015, Physical Review D.

[11]  C. B. D'Andrea,et al.  Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.

[12]  C. B. D'Andrea,et al.  The DES Science Verification weak lensing shear catalogues , 2015, Monthly Notices of the Royal Astronomical Society.

[13]  R. J. Brunner,et al.  Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data , 2015, 1507.05360.

[14]  Monika Richter,et al.  Gravitation And Cosmology , 2016 .

[15]  Birgit Wirtz,et al.  Principles Of Physical Cosmology , 2016 .

[16]  A. R. Rao Annual Review of Astronomy and Astrophysics , 2015 .

[17]  Christopher J. Miller,et al.  Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data , 2015 .

[18]  R. Nichol,et al.  Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. , 2015, Physical review letters.

[19]  R. Nichol,et al.  MAPPING AND SIMULATING SYSTEMATICS DUE TO SPATIALLY VARYING OBSERVING CONDITIONS IN DES SCIENCE VERIFICATION DATA , 2015, 1507.05647.

[20]  J. H. Marr,et al.  Angular momentum of disc galaxies with a lognormal density distribution , 2015, 1507.04515.

[21]  H. Hoekstra,et al.  CFHTLenS: a Gaussian likelihood is a sufficient approximation for a cosmological analysis of third-order cosmic shear statistics , 2015, 1502.04575.

[22]  F. Castander,et al.  An algorithm to build mock galaxy catalogues using MICE simulations , 2014, 1411.3286.

[23]  F. Castander,et al.  Measuring the growth of matter fluctuations with third-order galaxy correlations , 2014, 1403.1259.

[24]  F. Castander,et al.  The MICE Grand Challenge light-cone simulation – III. Galaxy lensing mocks from all-sky lensing maps , 2013, 1312.2947.

[25]  F. Castander,et al.  The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues , 2013, 1312.2013.

[26]  F. J. Castander,et al.  The MICE Grand Challenge Lightcone Simulation I: Dark matter clustering , 2013, 1312.1707.

[27]  R. Knabb,et al.  ANNALS OF THE NEW YORK ACADEMY OF SCIENCES , 2014, Annals of the New York Academy of Sciences.

[28]  E. Sheldon An implementation of Bayesian lensing shear measurement , 2014, 1403.7669.

[29]  Caltech,et al.  Weighing the Giants – II. Improved calibration of photometry from stellar colours and accurate photometric redshifts , 2012, 1208.0602.

[30]  H. Hoekstra,et al.  CFHTLenS: mapping the large-scale structure with gravitational lensing , 2013, 1303.1806.

[31]  S. Bridle,et al.  im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing , 2013, 1302.0183.

[32]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[33]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[34]  Alexander S. Szalay,et al.  SINGLE PARAMETER GALAXY CLASSIFICATION: THE PRINCIPAL CURVE THROUGH THE MULTI-DIMENSIONAL SPACE OF GALAXY PROPERTIES , 2012, ArXiv.

[35]  T. Hayler,et al.  Erratum: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar (Physical Review D - Particles, Fields, Gravitation and Cosmology) , 2012 .

[36]  M. Oguri,et al.  PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION , 2011, 1106.3823.

[37]  J. Carron ON THE INCOMPLETENESS OF THE MOMENT AND CORRELATION FUNCTION HIERARCHY AS PROBES OF THE LOGNORMAL FIELD , 2011, 1105.4467.

[38]  P. Schneider,et al.  Cosmic shear covariance: the log-normal approximation , 2011, 1105.3980.

[39]  V. Marra,et al.  Weak Lensing Observables in the Halo Model , 2011, 1101.4143.

[40]  Masanori Sato,et al.  RE-CAPTURING COSMIC INFORMATION , 2010, 1008.0349.

[41]  Tecnología SLAC National Accelerator Laboratory , 2010 .

[42]  A. Szalay,et al.  REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING , 2009, 0903.4693.

[43]  J. Ostriker,et al.  Testing a New Analytic Model for Gravitational Lensing Probabilities , 2005, astro-ph/0512644.

[44]  B. Flaugher The Dark Energy Survey , 2005 .

[45]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[46]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[47]  C. Gaskell,et al.  Lognormal X-Ray Flux Variations in an Extreme Narrow-Line Seyfert 1 Galaxy , 2004 .

[48]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations , 2004, astro-ph/0404275.

[49]  N. Bissantz,et al.  Monthly Notices of the Royal Astronomical Society , 2003 .

[50]  M. Takada,et al.  Lognormal Property of Weak-Lensing Fields , 2002, astro-ph/0202090.

[51]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[52]  Y. Suto,et al.  Probability Distribution Function of Cosmological Density Fluctuations from a Gaussian Initial Condition: Comparison of One-Point and Two-Point Lognormal Model Predictions with N-Body Simulations , 2001, astro-ph/0105218.

[53]  W. Stahel,et al.  Log-normal Distributions across the Sciences: Keys and Clues , 2001 .

[54]  M. Blanton How Stochastic Is the Relative Bias between Galaxy Types? , 2000, astro-ph/0003228.

[55]  B. Jain,et al.  The statistics of weak lensing at small angular scales: probability distribution function , 1999, astro-ph/9911502.

[56]  Y. Mellier Probing the Universe with Weak Lensing , 1998, astro-ph/9812172.

[57]  A. G. Bashkirov,et al.  Screening of Gravitational Interactions and Its Astrophysical Manifestations , 1998 .

[58]  Gudrun Wolfschmidt,et al.  From astronomy to astrophysics. , 1997 .

[59]  J. Yokoyama,et al.  Counts-in-cells analysis of the statistical distribution in an N-body simulated universe , 1995, astro-ph/9501041.

[60]  F. Bernardeau,et al.  Properties of the Cosmological Density Distribution Function , 1994, astro-ph/9403028.

[61]  F. Bernardeau Skewness and Kurtosis in Large-Scale Cosmic Fields , 1993, astro-ph/9312026.

[62]  Y. Suto Exploring Nonlinear Gravitational Clustering Phenomena with Cosmological N-Body Simulations , 1993 .

[63]  E. Gaztañaga,et al.  Redshift distortions of galaxy correlation functions , 1993, astro-ph/9305032.

[64]  Alexander S. Szalay,et al.  Higher order statistics of the galaxy distribution using generating functions , 1993 .

[65]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[66]  E. Gaztañaga,et al.  Probing the statistics of primordial fluctuations and their evolution , 1993 .

[67]  O. Lahav,et al.  Non-Gaussian signatures from Gaussian initial fluctuations : evolution of skewness and kurtosis from cosmological simulations in the highly nonlinear regime , 1993 .

[68]  E. Gaztañaga N-Point Correlation Functions in the CfA and SSRS Redshift Distribution of Galaxies , 1992 .

[69]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[70]  M. Itoh,et al.  A gravitational thermodynamic approach to probe the primordial spectrum of cosmological density fluctuations , 1990 .

[71]  J. Fry,et al.  Cosmological density fluctuations and large-scale structure From N-point correlation functions to the probability distribution , 1985 .

[72]  H. Zinnecker Star formation from hierarchical cloud fragmentation - A statistical theory of the log-normal Initial Mass Function , 1984 .

[73]  J. Fry,et al.  The Galaxy correlation hierarchy in perturbation theory , 1984 .

[74]  A. Hamilton,et al.  Thermodynamics and galaxy clustering: Nonlinear theory of high order correlations , 1984 .

[75]  P. Peebles STATISTICS OF THE DISTRIBUTION OF GALAXIES * , 1980 .

[76]  Simon D. M. White,et al.  The hierarchy of correlation functions and its relation to other measures of galaxy clustering , 1979 .

[77]  日本物理学会,et al.  Progress in Theoretical Physics , 1946, Nature.

[78]  H Shapley,et al.  On the Distribution of Galaxies. , 1933, Proceedings of the National Academy of Sciences of the United States of America.

[79]  E. Hubble THE DISTRIBUTION OF EXTRA-GALACTIC NEBULAE. , 1932, Science.

[80]  October I Physical Review Letters , 2022 .