Evidence of austenite memory in PH 15-5 and assessment of its formation mechanism

[1]  S. Marsoner,et al.  Presentation and Verification of an Electrolytic Etching Technique for the Determination of prior Austenite Grain Boundaries in the Steel PH15-5 , 2018, Practical Metallography.

[2]  Xianguang Zhang,et al.  Growth mode of austenite during reversion from martensite in Fe-2Mn-1.5Si-0.3C alloy: A transition in kinetics and morphology , 2018, Acta Materialia.

[3]  F. Niessen Austenite reversion in low-carbon martensitic stainless steels – a CALPHAD-assisted review , 2018 .

[4]  Xianguang Zhang,et al.  Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy , 2018 .

[5]  H. Shirazi,et al.  Microstructure evolution during austenite reversion in Fe-Ni martensitic alloys , 2018 .

[6]  Leonardo Wu,et al.  Austenite reversion kinetics and stability during tempering of a Ti-stabilized supermartensitic stainless steel: Correlative in situ synchrotron x-ray diffraction and dilatometry , 2017 .

[7]  Y. Tomota,et al.  Reverse austenite transformation behavior in a tempered martensite low-alloy steel studied using in situ neutron diffraction , 2017 .

[8]  G. Engberg,et al.  Investigation of Parent Austenite Grains from Martensite Structure Using EBSD in a Wear Resistant Steel , 2017, Materials.

[9]  Tetsuya Suzuki,et al.  Microstructure Evolution during Reverse Transformation of Austenite from Tempered Martensite in Low Alloy Steel , 2017 .

[10]  J. Hald,et al.  Kinetics analysis of two-stage austenitization in supermartensitic stainless steel , 2017 .

[11]  A. Deschamps,et al.  Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment , 2016 .

[12]  W. M. Rainforth,et al.  Predicting microstructure and strength of maraging steels: Elemental optimisation , 2016 .

[13]  A. K. Bhaduri,et al.  The role of crystallographic orientation of martensitic variants on cleavage crack propagation , 2016, 1606.09474.

[14]  V. Kuokkala,et al.  Iterative Determination of the Orientation Relationship Between Austenite and Martensite from a Large Amount of Grain Pair Misorientations , 2016, Metallurgical and Materials Transactions A.

[15]  Zhi-Gang Yang,et al.  Reversed Austenite Growth Behavior of a 13%Cr-5%Ni Stainless Steel during Intercritical Annealing , 2016 .

[16]  Yiyi Li,et al.  Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering , 2015 .

[17]  Jun Li,et al.  Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel , 2015 .

[18]  P. Rivera-Díaz-del-Castillo,et al.  A model for the microstructure behaviour and strength evolution in lath martensite , 2015 .

[19]  A. Ghosh,et al.  Effect of crystallographic texture on the cleavage fracture mechanism and effective grain size of ferritic steel , 2014 .

[20]  D. Ponge,et al.  Transition from Diffusive to Displacive Austenite Reversion in Low-Alloy Steel , 2013 .

[21]  Z. G. Yang,et al.  Effect of retained austenite on austenite memory of a 13% Cr–5% Ni martensitic steel , 2013 .

[22]  D. Ponge,et al.  Inheritance of Dislocations and Crystallographic Texture during Martensitic Reversion into Austenite , 2013 .

[23]  B. Kumar,et al.  Structure and microstructure evolution of a ternary Fe–Cr–Ni alloy akin to super martensitic stainless steel , 2013 .

[24]  M. Herbig,et al.  Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boun , 2013 .

[25]  H. Bhadeshia,et al.  In situ observations and crystallographic analysis of martensitic transformation in steel , 2013 .

[26]  Y. Adachi,et al.  Microstructure and cleavage in lath martensitic steels , 2013, Science and technology of advanced materials.

[27]  Jun Li,et al.  Effect of Cu addition on microstructure and mechanical properties of 15%Cr super martensitic stainless steel , 2012 .

[28]  J. W. Morris On the Ductile-Brittle Transition in Lath Martensitic Steel , 2011 .

[29]  C. Bernhard,et al.  Erste Ergebnisse des neuen Hochtemperatur-Konfokalmikroskops am Lehrstuhl für Metallurgie , 2011 .

[30]  Wenbo Liu,et al.  An in situ study on austenite memory and austenitic spontaneous recrystallization of a martensitic steel , 2010 .

[31]  Seok-Jae Lee,et al.  Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy , 2009 .

[32]  T. Tsuchiyama,et al.  Variant Selection of Reversed Austenite in Lath Martensite , 2007 .

[33]  Shigekazu Morito,et al.  The morphology and crystallography of lath martensite in alloy steels , 2006 .

[34]  Jun Hee Lee,et al.  Formation of reversed austenite during tempering of 14Cr−7Ni−0.3Nb−0.7Mo−0.03C super martensitic stainless steel , 2004 .

[35]  H. R. Habibi Bajguirani,et al.  The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel , 2002 .

[36]  J. Yang,et al.  Aging reactions in a 17-4 PH stainless steel , 2002 .

[37]  J. W. Morris,et al.  The Limits of Strength and Toughness in Steel , 2001 .

[38]  L. Höglund,et al.  DICTRA, a tool for simulation of diffusional transformations in alloys , 2000 .

[39]  G. Krauss Martensite in steel: strength and structure , 1999 .

[40]  S. Takaki,et al.  Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels. , 1991 .

[41]  H. Bhadeshia,et al.  Bainite in Steels , 2019 .

[42]  R. Krishnan,et al.  Effects of aging on the microstructure of 17-4 PH stainless steel , 1988 .

[43]  S. T. Kimmins,et al.  Austenite memory effect in 1 Cr–1 Mo–0·75V(Ti, B) steel , 1983 .

[44]  U. Hartmann Gezielte Untersuchungen zur quantitativen röntgenographischen Phasenanalyse (RPA) , 1975, HTM Journal of Heat Treatment and Materials.

[45]  Seiichi Watanabe,et al.  On the Formation of Austenite Grains from Prior Martensitic Structure , 1975 .