A transient forward‐targeting element for microneme‐regulated secretion in Toxoplasma gondii

Background information. Accurate sorting of proteins to the three types of secretory granules in Toxoplasma gondii is crucial for successful cell invasion by this obligate intracellular parasite. As in other eukaryotic systems, propeptide sequences are a common yet poorly understood feature of proteins destined for regulated secretion, which for Toxoplasma occurs through two distinct invasion organelles, rhoptries and micronemes. Microneme discharge during parasite apical attachment plays a pivotal role in cell invasion by delivering adhesive proteins for host receptor engagement.

[1]  G. Ward,et al.  Targeted Deletion of MIC5 Enhances Trimming Proteolysis of Toxoplasma Invasion Proteins , 2006, Eukaryotic Cell.

[2]  I. Coppens,et al.  A cleavable propeptide influences Toxoplasma infection by facilitating the trafficking and secretion of the TgMIC2-M2AP invasion complex. , 2006, Molecular biology of the cell.

[3]  M. Huynh,et al.  Toxoplasma MIC2 Is a Major Determinant of Invasion and Virulence , 2006, PLoS pathogens.

[4]  M. Solimena,et al.  Biogenesis of secretory granules. , 2006, Current opinion in cell biology.

[5]  R. D. De Lisle,et al.  Expression of pro-Muclin in pancreatic AR42J cells induces functional regulated secretory granules. , 2005, American journal of physiology. Cell physiology.

[6]  R. D. De Lisle,et al.  Binding of the Golgi Sorting Receptor Muclin to Pancreatic Zymogens through Sulfated O-linked Oligosaccharides* , 2004, Journal of Biological Chemistry.

[7]  Y. Loh,et al.  The C-terminus of prohormone convertase 2 is sufficient and necessary for Raft association and sorting to the regulated secretory pathway. , 2004, Biochemistry.

[8]  Y. Loh,et al.  Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. , 2003, Molecular biology of the cell.

[9]  N. Kowalsman,et al.  The Prodomain of a Secreted Hydrophobic Mini-protein Facilitates Its Export from the Endoplasmic Reticulum by Hitchhiking on Sorting Receptors* , 2003, Journal of Biological Chemistry.

[10]  L. Sibley,et al.  Rapid invasion of host cells by Toxoplasma requires secretion of the MIC2–M2AP adhesive protein complex , 2003, The EMBO journal.

[11]  I. Coppens,et al.  Golgi biogenesis in Toxoplasma gondii , 2002, Nature.

[12]  V. Madden,et al.  An Alternate Targeting Pathway for Procathepsin L in Mouse Fibroblasts , 2002, Traffic.

[13]  D. Soldati,et al.  Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. , 2001, International journal for parasitology.

[14]  J. Boothroyd,et al.  The pro region of Toxoplasma ROP1 is a rhoptry-targeting signal. , 2001, International journal for parasitology.

[15]  J. Ajioka,et al.  TgM2AP participates in Toxoplasma gondii invasion of host cells and is tightly associated with the adhesive protein TgMIC2 , 2001, Molecular microbiology.

[16]  K. Joiner,et al.  Toxoplasma gondii ADP-ribosylation Factor 1 Mediates Enhanced Release of Constitutively Secreted Dense Granule Proteins* , 2001, The Journal of Biological Chemistry.

[17]  W. Voorhout,et al.  Secretion of Surfactant Protein C, an Integral Membrane Protein, Requires the N-terminal Propeptide* , 2001, The Journal of Biological Chemistry.

[18]  D. Soldati,et al.  Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. , 2001, Trends in parasitology.

[19]  A. Loyens,et al.  Molecular characterization of TgMIC5, a proteolytically processed antigen secreted from the micronemes of Toxoplasma gondii. , 2000, Molecular and biochemical parasitology.

[20]  D. Soldati,et al.  Two Conserved Amino Acid Motifs Mediate Protein Targeting to the Micronemes of the Apicomplexan ParasiteToxoplasma gondii , 2000, Molecular and Cellular Biology.

[21]  K. Joiner,et al.  Targeting to rhoptry organelles of Toxoplasma gondii involves evolutionarily conserved mechanisms. , 2000, Nature Cell Biology.

[22]  K. Joiner,et al.  Toxoplasma gondii: conserved protein machinery in an unusual secretory pathway? , 2000, Microbes and infection.

[23]  U. Gullberg,et al.  Processing and targeting of granule proteins in human neutrophils. , 1999, Journal of immunological methods.

[24]  L. Sibley,et al.  Differential membrane targeting of the secretory proteins GRA4 and GRA6 within the parasitophorous vacuole formed by Toxoplasma gondii. , 1999, Molecular and biochemical parasitology.

[25]  D. Roos,et al.  Constitutive Calcium-independent Release of Toxoplasma gondii Dense Granules Occurs through the NSF/SNAP/SNARE/Rab Machinery* , 1999, The Journal of Biological Chemistry.

[26]  L. Sibley,et al.  Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii , 1999, Molecular microbiology.

[27]  J. Boothroyd,et al.  Processing of Toxoplasma ROP1 protein in nascent rhoptries. , 1998, Molecular and biochemical parasitology.

[28]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K. Joiner,et al.  The Protozoan Parasite Toxoplasma gondii Targets Proteins to Dense Granules and the Vacuolar Space Using Both Conserved and Unusual Mechanisms , 1998, The Journal of cell biology.

[30]  J. Palmer,et al.  A Plastid of Probable Green Algal Origin in Apicomplexan Parasites , 1997, Science.

[31]  J. Ajioka,et al.  Molecular characterisation of an expressed sequence tag locus of Toxoplasma gondii encoding the micronemal protein MIC2. , 1997, Molecular and biochemical parasitology.

[32]  S. Tooze Biogenesis of secretory granules Implications arising from the immature secretory granule in the regulated pathway of secretion , 1991, FEBS letters.

[33]  J. Lippincott-Schwartz,et al.  Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin a suggests an ER recycling pathway , 1990, Cell.

[34]  B. Guy,et al.  Molecular characterization of a 23-kilodalton major antigen secreted by Toxoplasma gondii. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Lippincott-Schwartz,et al.  Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: Evidence for membrane cycling from Golgi to ER , 1989, Cell.

[36]  J. Dubremetz,et al.  Characterization of a family of rhoptry proteins of Toxoplasma gondii. , 1988, Molecular and biochemical parasitology.

[37]  A. Ryle PEPSINOGEN B: THE ZYMOGEN OF PEPSIN B. , 1965, The Biochemical journal.

[38]  A. Previero,et al.  Modification of tryptophan residues in trypsin, α-chymotrypsin and pepsinogen , 1964 .

[39]  J. Dubremetz Host cell invasion by Toxoplasma gondii. , 1998, Trends in microbiology.

[40]  L. Sibley,et al.  Sequential protein secretion from three distinct organelles of Toxoplasma gondii accompanies invasion of human fibroblasts. , 1997, European journal of cell biology.

[41]  J. Blackwell,et al.  Toxoplasma gondii expressed sequence tags: insight into tachyzoite gene expression. , 1996, Molecular and biochemical parasitology.

[42]  P. Ossorio,et al.  A Toxoplasma gondii rhoptry protein associated with host cell penetration has unusual charge asymmetry. , 1992, Molecular and biochemical parasitology.

[43]  R. Kelly,et al.  Constitutive and regulated secretion of proteins. , 1987, Annual review of cell biology.

[44]  A. Previero,et al.  Modification of tryptophan residues in trypsin, alpha-chymotrypsin and pepsinogen. , 1964, Biochemical and biophysical research communications.