Insights into the mechanochemical interfacial interaction between calcite and serpentine: Implications for ambient CO2 capture

[1]  Dharmjeet Madhav,et al.  Kinetics of enhanced magnesium carbonate formation for CO2 storage via mineralization at 200 °C , 2022, International Journal of Greenhouse Gas Control.

[2]  T. Ling,et al.  Review on CO2 curing of non-hydraulic calcium silicates cements: Mechanism, carbonation and performance , 2022, Cement and Concrete Composites.

[3]  A. Bardow,et al.  A climate-optimal supply chain for CO2 capture, utilization, and storage by mineralization , 2022, Journal of Cleaner Production.

[4]  G. Dipple,et al.  Rate and capacity of cation release from ultramafic mine tailings for carbon capture and storage , 2022, Applied Geochemistry.

[5]  C. Putnis,et al.  Nanoparticles formed during mineral-fluid interactions , 2021, Chemical Geology.

[6]  W. Tremel,et al.  Multistep Crystallization Pathways in the Ambient‐Temperature Synthesis of a New Alkali‐Activated Binder , 2021, Advanced Functional Materials.

[7]  Qiwu Zhang,et al.  Mechanochemically incorporating magnesium sulfate into antigorite to provide active nucleation sites for efficient precipitation of cadmium ions from weak acidic solution. , 2021, Journal of hazardous materials.

[8]  S. Kerisit,et al.  Thin Water Films Enable Low-Temperature Magnesite Growth Under Conditions Relevant to Geologic Carbon Sequestration. , 2021, Environmental science & technology.

[9]  S. Kentish,et al.  Mineral carbonation with thermally activated serpentine; the implication of serpentine preheating temperature and heat integration , 2021 .

[10]  W. Tremel,et al.  Insights into the In Vitro Formation of Apatite from Mg‐Stabilized Amorphous Calcium Carbonate , 2020, Advanced Functional Materials.

[11]  E. Benhelal,et al.  Insights into chemical stability of Mg-silicates and silica in aqueous systems using 25Mg and 29Si solid-state MAS NMR spectroscopy: Applications for CO2 capture and utilisation , 2020 .

[12]  S. Greenbaum,et al.  29Si solid state MAS NMR study on leaching behaviors and chemical stability of different Mg-silicate structures for CO2 sequestration , 2020 .

[13]  M. Lomas,et al.  Potential for large-scale CO2 removal via enhanced rock weathering with croplands , 2020, Nature.

[14]  Qiwu Zhang,et al.  Efficient separation of Zn(Ⅱ) from Cd(Ⅱ) in sulfate solution by mechanochemically activated serpentine. , 2020, Chemosphere.

[15]  Sandra Ó. Snæbjörnsdóttir,et al.  CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C , 2020, Geochimica et Cosmochimica Acta.

[16]  Qiwu Zhang,et al.  Cogrinding with alkaline metal salts to enhance the reactivity of silicate mineral to serve as silicon fertilizer , 2020 .

[17]  Z. Li,et al.  Efficient Pb removal through the formations of (basic) carbonate precipitates from different sources during wet stirred ball milling with CaCO3. , 2019, The Science of the total environment.

[18]  E. Kennedy,et al.  Dissolution of heat activated serpentine for CO2 sequestration: The effect of silica precipitation at different temperature and pH values , 2019, Journal of CO2 Utilization.

[19]  D. Luo,et al.  Energy-efficient mineral carbonation of CaSO4 derived from wollastonite via a roasting-leaching route , 2019, Hydrometallurgy.

[20]  Qiwu Zhang,et al.  Mechanochemical activation of antigorite to provide active magnesium for precipitating cesium from the existences of potassium and sodium , 2019, Applied Clay Science.

[21]  Omeid Rahmani CO2 sequestration by indirect mineral carbonation of industrial waste red gypsum , 2018, Journal of CO2 Utilization.

[22]  Yonglai Lu,et al.  In situ assembly of SiO2 nanodots/layered double hydroxide nanocomposite for the reinforcement of solution-polymerized butadiene styrene rubber/butadiene rubber , 2018 .

[23]  E. Kennedy,et al.  Insights into the dissolution kinetics of thermally activated serpentine for CO2 sequestration , 2017 .

[24]  Qiwu Zhang,et al.  Mechanochemical activation of serpentine for recovering Cu (II) from wastewater , 2017 .

[25]  Marco Voltolini,et al.  Wollastonite Carbonation in Water-Bearing Supercritical CO2: Effects of Particle Size. , 2017, Environmental science & technology.

[26]  Yan Yin,et al.  Thermal activation of serpentine for adsorption of cadmium. , 2017, Journal of hazardous materials.

[27]  Qiwu Zhang,et al.  Separation of copper from nickel in sulfate solutions by mechanochemical activation with CaCO3 , 2017 .

[28]  K. Sand,et al.  Inhibition of Calcite Growth: Combined Effects of Mg2+ and SO42– , 2016 .

[29]  B. Tubana,et al.  A Review of Silicon in Soils and Plants and Its Role in US Agriculture: History and Future Perspectives , 2016 .

[30]  Radzuan Junin,et al.  A review on carbon dioxide mineral carbonation through pH-swing process , 2015 .

[31]  Michele Paternoster,et al.  Serpentinite Carbonation for CO2 Sequestration in the Southern Apennines: Preliminary Study , 2015 .

[32]  S. Wilson,et al.  Increased thermal stability of nesquehonite (MgCO3·3H2O) in the presence of humidity and CO2: Implications for low-temperature CO2 storage , 2015 .

[33]  B. Iversen,et al.  Optimized carbonation of magnesium silicate mineral for CO2 storage. , 2015, ACS applied materials & interfaces.

[34]  M. Maroto-Valer,et al.  A review of mineral carbonation technologies to sequester CO2. , 2014, Chemical Society reviews.

[35]  A. Putnis,et al.  Coupled dissolution and precipitation at mineral-fluid interfaces , 2014 .

[36]  B. Dlugogorski,et al.  Dehydroxylation of serpentine minerals: Implications for mineral carbonation , 2014 .

[37]  B. Dlugogorski,et al.  Energy cost of heat activating serpentinites for CO2 storage by mineralisation , 2013 .

[38]  A. Olajire A review of mineral carbonation technology in sequestration of CO2 , 2013 .

[39]  D. Hoyt,et al.  Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids , 2013 .

[40]  B. Dlugogorski,et al.  Thermal activation of antigorite for mineralization of CO2. , 2013, Environmental science & technology.

[41]  M. Mazzotti,et al.  Carbonation of Activated Serpentine for Direct Flue Gas Mineralization , 2013 .

[42]  H. Zeng,et al.  Calcium Carbonate Nanotablets: Bridging Artificial to Natural Nacre , 2012, Advanced materials.

[43]  F. Saito,et al.  A review on mechanochemical syntheses of functional materials , 2012 .

[44]  V. Bruckman,et al.  Improved soil carbonate determination by FT-IR and X-ray analysis , 2012, Environmental Chemistry Letters.

[45]  James Mack,et al.  Mechanochemistry: opportunities for new and cleaner synthesis. , 2012, Chemical Society reviews.

[46]  G. Cressey,et al.  Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions , 2012 .

[47]  Xiaolong Wang,et al.  Integration of CO2 Capture and Mineral Carbonation by Using Recyclable Ammonium Salts , 2011, ChemSusChem.

[48]  P Renforth,et al.  Silicate production and availability for mineral carbonation. , 2011, Environmental science & technology.

[49]  S. Dupraz,et al.  CO2 geological storage: The environmental mineralogy perspective , 2011 .

[50]  Peter B. Kelemen,et al.  Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation , 2009 .

[51]  E. Oelkers,et al.  Magnesite growth rates as a function of temperature and saturation state , 2009 .

[52]  S. Tsang,et al.  Recent advances in CO2 capture and utilization. , 2008, ChemSusChem.

[53]  M. Mazzotti,et al.  Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure , 2008 .

[54]  R. Steeneveldt,et al.  CO2 Capture and Storage: Closing the Knowing–Doing Gap , 2006 .

[55]  L. Pérez-Maqueda,et al.  Spectroscopic study of the dehydroxylation process of a sonicated antigorite , 2006 .

[56]  Vladimir V Boldyrev Mechanochemistry and mechanical activation of solids , 2006 .

[57]  C. Clemency,et al.  The dissolution kinetics of brucite, antigorite, talc, and phlogopite at room temperature and pressure , 1981 .