Improved digital tracking controller design for pilot-scale unmanned helicopter

Abstract In this paper, methods for improved design of digital tracking controller for a pilot-scale unmanned helicopter are considered. By discretizing the linearized helicopter model, the linear quadratic with integral (LQI) capability is investigated and applied in order to develop an efficient tracking system including a state-feedback plus integral action. The helicopter velocities are used to formulate a prescribed position reference tracking trajectory. When both process and measurement noises are present, a Kalman filter (KF) is combined with the LQI to form a linear quadratic Gaussian with integral (LQGI) tracking system. Simulation studies illuminate both the capability of the controller design and the accuracy of the estimator. Next, H2, H ∞ and mixed H 2 / H ∞ controls are designed and the results between methods are produced and compared.

[1]  Magdi S. Mahmoud Dissipative control for Internet-based switching systems , 2009, 2009 IEEE Symposium on Industrial Electronics & Applications.

[2]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[3]  Peng Shi,et al.  Adaptive Tracking for Stochastic Nonlinear Systems With Markovian Switching $ $ , 2010, IEEE Transactions on Automatic Control.

[4]  Huibert Kwakernaak,et al.  Robust control and H∞-optimization - Tutorial paper , 1993, Autom..

[5]  Michel Verhaegen,et al.  Proceedings of the 37th IEEE Conference on Decision and Control , 1998 .

[6]  P. Pešek,et al.  LQG tracking problem and its tracking robustness , 2003 .

[7]  Yuanqing Xia,et al.  Back-stepping sliding mode control for missile systems based on an extended state observer , 2011 .

[8]  Peng Shi,et al.  Robust Output Feedback Tracking Control for Time-Delay Nonlinear Systems Using Neural Network , 2007, IEEE Transactions on Neural Networks.

[9]  Adrian S. Lewis,et al.  HIFOO - A MATLAB package for fixed-order controller design and H ∞ optimization , 2006 .

[10]  Raymond W. Prouty,et al.  Helicopter performance, stability, and control , 1986 .

[11]  Yuanqing Xia,et al.  Attitude Tracking of Rigid Spacecraft With Bounded Disturbances , 2011, IEEE Transactions on Industrial Electronics.

[12]  Subodh Bhandari,et al.  Six-DoF Dynamic Modeling and Flight Testing of a UAV Helicopter , 2005 .

[13]  Jianliang Wang,et al.  Reliable Hinfinity controller design for linear systems , 2001, Autom..

[14]  P. Young,et al.  An approach to the linear multivariable servomechanism problem. , 1972 .

[15]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[16]  Agus Budiyono,et al.  Optimal tracking controller design for a small scale helicopter , 2007, ArXiv.

[17]  Jyh-Horng Chou,et al.  Regional eigenvalue-clustering robustness of linear uncertain multivariable output feedback PID control systems , 2009, J. Frankl. Inst..

[18]  Yan Shi,et al.  Mixed H2/H∞ control of uncertain jumping time-delay systems , 2008, J. Frankl. Inst..

[19]  H. Shim,et al.  A comprehensive study of control design for an autonomous helicopter , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[20]  Yuanqing Xia,et al.  Attitude stabilization of rigid spacecraft with finite‐time convergence , 2011 .

[21]  Jian Huang,et al.  Stochastic fault tolerant control of networked control systems , 2009, J. Frankl. Inst..

[22]  Fei Liu,et al.  Gain-scheduled PI tracking control on stochastic nonlinear systems with partially known transition probabilities , 2011, J. Frankl. Inst..

[23]  D. Naidu,et al.  Optimal Control Systems , 2018 .

[24]  Zehui Mao,et al.  Observer based fault-tolerant control for a class of nonlinear networked control systems , 2010, J. Frankl. Inst..

[25]  Yuanqing Xia,et al.  Robust dissipative control for internet-based switching systems , 2010, J. Frankl. Inst..

[26]  Magdi S. Mahmoud New results on linear parameter-varying time-delay systems , 2004, J. Frankl. Inst..