Distributed control and optimization of process system networks: A review and perspective

Abstract Large-scale and complex process systems are essentially interconnected networks. The automated operation of such process networks requires the solution of control and optimization problems in a distributed manner. In this approach, the network is decomposed into several subsystems, each of which is under the supervision of a corresponding computing agent (controller, optimizer). The agents coordinate their control and optimization decisions based on information communication among them. In recent years, algorithms and methods for distributed control and optimization are undergoing rapid development. In this paper, we provide a comprehensive, up-to-date review with perspectives and discussions on possible future directions.

[1]  Thomas F. Edgar,et al.  Process energy systems: Control, economic, and sustainability objectives , 2012, Comput. Chem. Eng..

[2]  João M. F. Xavier,et al.  Distributed Optimization With Local Domains: Applications in MPC and Network Flows , 2013, IEEE Transactions on Automatic Control.

[3]  Hao Wu,et al.  Deep convolutional neural network model based chemical process fault diagnosis , 2018, Comput. Chem. Eng..

[4]  Prodromos Daoutidis,et al.  Decomposing complex plants for distributed control: Perspectives from network theory , 2017, Comput. Chem. Eng..

[5]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[6]  Panagiotis D. Christofides,et al.  Handling communication disruptions in distributed model predictive control , 2011 .

[7]  Antoine Girard,et al.  Dynamic Triggering Mechanisms for Event-Triggered Control , 2013, IEEE Transactions on Automatic Control.

[8]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[9]  Ignacio E. Grossmann,et al.  A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations , 2013, Comput. Chem. Eng..

[10]  Michael Baldea,et al.  Dynamics and Nonlinear Control of Integrated Process Systems , 2012 .

[11]  J H Lee,et al.  Approximate dynamic programming approach for process control , 2010, ICCAS 2010.

[12]  Panagiotis D. Christofides,et al.  Sequential and Iterative Architectures for Distributed Model Predictive Control of Nonlinear Process Systems , 2010 .

[13]  Tsung-Hui Chang,et al.  Communication-Efficient Distributed Demand Response: A Randomized ADMM Approach , 2017, IEEE Transactions on Smart Grid.

[14]  Christos T. Maravelias,et al.  Reformulations and Branching Methods for Mixed-Integer Programming Chemical Production Scheduling Models , 2013 .

[15]  Antonis Papachristodoulou,et al.  A Decomposition Technique for Nonlinear Dynamical System Analysis , 2012, IEEE Transactions on Automatic Control.

[16]  Dragan Nesic,et al.  Stability of Wireless and Wireline Networked Control Systems , 2007, IEEE Transactions on Automatic Control.

[17]  X. Zhao,et al.  Surrogate Gradient Algorithm for Lagrangian Relaxation , 1999 .

[18]  Ignacio E. Grossmann,et al.  Advances in mathematical programming models for enterprise-wide optimization , 2012, Comput. Chem. Eng..

[19]  C. Ocampo‐Martinez,et al.  Partitioning Approach oriented to the Decentralised Predictive Control of Large-Scale Systems , 2011 .

[20]  J. M. Maestre,et al.  Distributed Model Predictive Control: An Overview and Roadmap of Future Research Opportunities , 2014, IEEE Control Systems.

[21]  Daniel E. Quevedo,et al.  Stability analysis of networked control systems subject to packet-dropouts and finite-level quantization , 2011, Syst. Control. Lett..

[22]  Huiping Li,et al.  Distributed receding horizon control of large-scale nonlinear systems: Handling communication delays and disturbances , 2014, Autom..

[23]  D. Siljak,et al.  Control of Complex Systems: Structural Constraints and Uncertainty , 2010 .

[24]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[25]  Christos T. Maravelias,et al.  General framework and modeling approach classification for chemical production scheduling , 2012 .

[26]  Victor M. Zavala,et al.  An Optimization-Based State Estimation Framework for Large-Scale Natural Gas Networks , 2018 .

[27]  Melanie Nicole Zeilinger,et al.  Inexact fast alternating minimization algorithm for distributed model predictive control , 2014, 53rd IEEE Conference on Decision and Control.

[28]  Christos T. Maravelias,et al.  Integration of production planning and scheduling: Overview, challenges and opportunities , 2009, Comput. Chem. Eng..

[29]  Panagiotis D. Christofides,et al.  Distributed model predictive control: A tutorial review and future research directions , 2013, Comput. Chem. Eng..

[30]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[31]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Marianthi G. Ierapetritou,et al.  Short‐term scheduling of a large‐scale oil‐refinery operations: Incorporating logistics details , 2011 .

[33]  Linus Schrage,et al.  The global solver in the LINDO API , 2009, Optim. Methods Softw..

[34]  Prodromos Daoutidis,et al.  Control‐relevant decomposition of process networks via optimization‐based hierarchical clustering , 2016 .

[35]  W. P. M. H. Heemels,et al.  Robust self-triggered MPC for constrained linear systems: A tube-based approach , 2016, Autom..

[36]  James T. Kwok,et al.  Asynchronous Distributed ADMM for Consensus Optimization , 2014, ICML.

[37]  Ignacio E. Grossmann,et al.  Lagrangian relaxation based decomposition for well scheduling in shale-gas systems , 2014, Comput. Chem. Eng..

[38]  Biao Huang,et al.  Distributed monitoring for large-scale processes based on multivariate statistical analysis and Bayesian method , 2016 .

[39]  Christos T. Maravelias,et al.  A mixed-integer linear programming model for real-time cost optimization of building heating, ventilation, and air conditioning equipment , 2017 .

[40]  Lei Luo,et al.  Refined convergent cross-mapping for disturbance propagation analysis of chemical processes , 2017, Comput. Chem. Eng..

[41]  Lorenz T. Biegler,et al.  Optimal sensitivity based on IPOPT , 2012, Math. Program. Comput..

[42]  Santo Fortunato,et al.  Community detection in networks: A user guide , 2016, ArXiv.

[43]  Luca Zaccarian,et al.  Event-triggered transmission for linear control over communication channels , 2013, Autom..

[44]  David Angeli,et al.  Fundamentals of economic model predictive control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[45]  Emilia Fridman,et al.  Control under quantization, saturation and delay: An LMI approach , 2009, Autom..

[46]  Michael Baldea,et al.  Integrating operations and control: A perspective and roadmap for future research , 2018, Comput. Chem. Eng..

[47]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Prodromos Daoutidis,et al.  Comprehensive study of decomposition effects on distributed output tracking of an integrated process over a wide operating range , 2018, Chemical Engineering Research and Design.

[49]  P. Daoutidis,et al.  Relative time‐averaged gain array (RTAGA) for distributed control‐oriented network decomposition , 2018 .

[50]  Panagiotis D. Christofides,et al.  Economic model predictive control of nonlinear process systems using Lyapunov techniques , 2012 .

[51]  Prodromos Daoutidis,et al.  Control configuration synthesis using agglomerative hierarchical clustering: A graph-theoretic approach , 2016 .

[52]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[53]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[54]  Prodromos Daoutidis,et al.  Impact of Decomposition on Distributed Model Predictive Control: A Process Network Case Study , 2017 .

[55]  Vassilios S. Vassiliadis,et al.  Automated structure detection for distributed process optimization , 2016, Comput. Chem. Eng..

[56]  Qi Zhang,et al.  Expanding scope and computational challenges in process scheduling , 2018, Comput. Chem. Eng..

[57]  Nathan van de Wouw,et al.  Stability of Networked Control Systems With Uncertain Time-Varying Delays , 2009, IEEE Transactions on Automatic Control.

[58]  Thomas Parisini,et al.  Plug-and-Play Fault Detection and Control-Reconfiguration for a Class of Nonlinear Large-Scale Constrained Systems , 2014, IEEE Transactions on Automatic Control.

[59]  Morgan T. Kelley,et al.  An efficient MILP framework for integrating nonlinear process dynamics and control in optimal production scheduling calculations , 2018, Comput. Chem. Eng..

[60]  Fionn Murtagh,et al.  Algorithms for hierarchical clustering: an overview , 2012, WIREs Data Mining Knowl. Discov..

[61]  Prodromos Daoutidis,et al.  Towards a Generic Algorithm for Identifying High-Quality Decompositions of Optimization Problems , 2018 .

[62]  Prodromos Daoutidis,et al.  Networks with large solvent recycle: Dynamics, hierarchical control, and a biorefinery application , 2012 .

[63]  Riccardo Scattolini,et al.  Architectures for distributed and hierarchical Model Predictive Control - A review , 2009 .

[64]  Panos J. Antsaklis,et al.  Stability of model-based networked control systems with time-varying transmission times , 2004, IEEE Transactions on Automatic Control.

[65]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[66]  Zeyuan Allen Zhu,et al.  Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling , 2015, ICML.

[67]  Marianthi G. Ierapetritou,et al.  From process control to supply chain management: An overview of integrated decision making strategies , 2017, Comput. Chem. Eng..

[68]  Tor Arne Johansen,et al.  Distributed MPC of Interconnected Nonlinear Systems by Dynamic Dual Decomposition , 2014 .

[69]  Xiaoming Liu,et al.  SLPA: Uncovering Overlapping Communities in Social Networks via a Speaker-Listener Interaction Dynamic Process , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[70]  Stephen J. Wright Coordinate descent algorithms , 2015, Mathematical Programming.

[71]  Xiangfeng Wang,et al.  Asynchronous Distributed ADMM for Large-Scale Optimization—Part I: Algorithm and Convergence Analysis , 2015, IEEE Transactions on Signal Processing.

[72]  Sujit S. Jogwar,et al.  Sustainability and process control: A survey and perspective , 2016 .

[73]  Shiqian Ma,et al.  On the Global Linear Convergence of the ADMM with MultiBlock Variables , 2014, SIAM J. Optim..

[74]  Carlo Novara,et al.  Data-Driven Inversion-Based Control of Nonlinear Systems With Guaranteed Closed-Loop Stability , 2018, IEEE Transactions on Automatic Control.

[75]  Panagiotis D. Christofides,et al.  Distributed model predictive control of nonlinear process systems , 2009 .

[76]  Panagiotis D. Christofides,et al.  Detection, isolation and handling of actuator faults in distributed model predictive control systems , 2010 .

[77]  Shaun A. Forth An efficient overloaded implementation of forward mode automatic differentiation in MATLAB , 2006, TOMS.

[78]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[79]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[80]  Prodromos Daoutidis,et al.  System Decomposition for Distributed Multivariate Statistical Process Monitoring by Performance Driven Agglomerative Clustering , 2018, Industrial & Engineering Chemistry Research.

[81]  Lorenz T. Biegler,et al.  Parallel cyclic reduction decomposition for dynamic optimization problems , 2019, Comput. Chem. Eng..

[82]  Paulo Tabuada,et al.  A Framework for the Event-Triggered Stabilization of Nonlinear Systems , 2015, IEEE Transactions on Automatic Control.

[83]  Cédric Langbort,et al.  Distributed control design for systems interconnected over an arbitrary graph , 2004, IEEE Transactions on Automatic Control.

[84]  Yunmei Chen,et al.  An Accelerated Linearized Alternating Direction Method of Multipliers , 2014, SIAM J. Imaging Sci..

[85]  Marianthi G. Ierapetritou,et al.  An integrated framework for scheduling and control using fast model predictive control , 2015 .

[86]  Prodromos Daoutidis,et al.  Community-based synthesis of distributed control architectures for integrated process networks , 2017 .

[87]  Kanya Tanaka,et al.  Decentralized model predictive control via dual decomposition , 2008, 2008 47th IEEE Conference on Decision and Control.

[88]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[89]  D. West Introduction to Graph Theory , 1995 .

[90]  Panagiotis D. Christofides,et al.  Selection of control configurations for economic model predictive control systems , 2014 .

[91]  Mark E. J. Newman,et al.  Stochastic blockmodels and community structure in networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Réka Albert,et al.  Near linear time algorithm to detect community structures in large-scale networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Tianbao Yang,et al.  Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent , 2013, NIPS.

[94]  Zhi-Quan Luo,et al.  Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[95]  Thomas Hofmann,et al.  Communication-Efficient Distributed Dual Coordinate Ascent , 2014, NIPS.

[96]  Peter Richtárik,et al.  Accelerated, Parallel, and Proximal Coordinate Descent , 2013, SIAM J. Optim..

[97]  Dong Yue,et al.  STATE FEEDBACK CONTROLLER DESIGN OF NETWORKED CONTROL SYSTEMS WITH PARAMETER UNCERTAINTY AND STATE‐DELAY , 2006 .

[98]  Michael D Lemmon,et al.  Optimal power flow in microgrids using event-triggered optimization , 2010, Proceedings of the 2010 American Control Conference.

[99]  Fu Lin,et al.  Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers , 2011, IEEE Transactions on Automatic Control.

[100]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Zhi-huan Song,et al.  Distributed PCA Model for Plant-Wide Process Monitoring , 2013 .

[102]  Michael Baldea,et al.  A time scale-bridging approach for integrating production scheduling and process control , 2015, Comput. Chem. Eng..

[103]  Zhi-Quan Luo,et al.  Iteration complexity analysis of block coordinate descent methods , 2013, Mathematical Programming.

[104]  Wotao Yin,et al.  A Globally Convergent Algorithm for Nonconvex Optimization Based on Block Coordinate Update , 2014, J. Sci. Comput..

[105]  Albert-Lszl Barabsi,et al.  Network Science , 2016, Encyclopedia of Big Data.

[106]  Fahad Albalawi,et al.  Distributed economic model predictive control for operational safety of nonlinear processes , 2017 .

[107]  Peter Xiaoping Liu,et al.  On the Model-Based Approach to Nonlinear Networked Control Systems , 2007, 2007 American Control Conference.

[108]  Jie Bao,et al.  Dissipativity analysis for networks of process systems , 2013, Comput. Chem. Eng..

[109]  Qing-Long Han,et al.  Distributed networked control systems: A brief overview , 2017, Inf. Sci..

[110]  Dragoslav D. Siljak,et al.  A graph-theoretic algorithm for hierarchical decomposition of dynamic systems with applications to estimation and control , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[111]  Karl Henrik Johansson,et al.  Distributed MPC Via Dual Decomposition and Alternative Direction Method of Multipliers , 2012, ArXiv.

[112]  Mo-Yuen Chow,et al.  Networked Control System: Overview and Research Trends , 2010, IEEE Transactions on Industrial Electronics.

[113]  Melanie Nicole Zeilinger,et al.  Quantization Design for Distributed Optimization , 2015, IEEE Transactions on Automatic Control.

[114]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[115]  Thomas J. McAvoy,et al.  A Nonlinear Dynamic Model of a Vinyl Acetate Process , 2003 .

[116]  Victor M. Zavala,et al.  Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..

[117]  Mo-Yuen Chow,et al.  Optimal Stabilizing Gain Selection for Networked Control Systems With Time Delays and Packet Losses , 2009, IEEE Transactions on Control Systems Technology.

[118]  Ignacio E. Grossmann,et al.  Enterprise‐wide optimization: A new frontier in process systems engineering , 2005 .

[119]  Stephen J. Wright,et al.  Cooperative distributed model predictive control , 2010, Syst. Control. Lett..

[120]  Christos T. Maravelias,et al.  Combining the advantages of discrete- and continuous-time scheduling models: Part 1. Framework and mathematical formulations , 2018, Comput. Chem. Eng..

[121]  Zheng Xu,et al.  Adaptive ADMM with Spectral Penalty Parameter Selection , 2016, AISTATS.

[122]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[123]  Prodromos Daoutidis,et al.  Structural evaluation of control configurations for multivariable nonlinear processes , 1992 .

[124]  Pedro M. Castro,et al.  Scope for industrial applications of production scheduling models and solution methods , 2014, Comput. Chem. Eng..

[125]  A. Michel,et al.  Lyapunov stability of interconnected systems: Decomposition into strongly connected subsystems , 1978 .

[126]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[127]  Xinghuo Yu,et al.  Distributed Event-Triggered Scheme for Economic Dispatch in Smart Grids , 2016, IEEE Transactions on Industrial Informatics.

[128]  Panagiotis D. Christofides,et al.  Distributed Model Predictive Control of Switched Nonlinear Systems with Scheduled Mode Transitions , 2013 .

[129]  David L. Woodruff,et al.  Pyomo — Optimization Modeling in Python , 2012, Springer Optimization and Its Applications.

[130]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[131]  Ambros M. Gleixner,et al.  SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework , 2018, Optim. Methods Softw..

[132]  Ana Paula Barbosa-Póvoa,et al.  Progresses and challenges in process industry supply chains optimization , 2012 .

[133]  Marshall L. Fisher,et al.  An Applications Oriented Guide to Lagrangian Relaxation , 1985 .

[134]  Panagiotis D. Christofides,et al.  Distributed model predictive control of nonlinear systems subject to asynchronous and delayed measurements , 2010, Autom..

[135]  Moritz Diehl,et al.  Dynamic optimization with CasADi , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[136]  Michael Ulbrich,et al.  A class of distributed optimization methods with event-triggered communication , 2013, Computational Optimization and Applications.

[137]  Lin Xiao,et al.  On the complexity analysis of randomized block-coordinate descent methods , 2013, Mathematical Programming.

[138]  Victor M. Zavala,et al.  pyomo.dae: a modeling and automatic discretization framework for optimization with differential and algebraic equations , 2018, Math. Program. Comput..

[139]  Panagiotis D. Christofides,et al.  Economic Model Predictive Control , 2015, Encyclopedia of Systems and Control.

[140]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[141]  Prodromos Daoutidis,et al.  Graph representation and decomposition of ODE/hyperbolic PDE systems , 2017, Comput. Chem. Eng..

[142]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[143]  Peter Sanders,et al.  Recent Advances in Graph Partitioning , 2013, Algorithm Engineering.

[144]  Tiago P. Peixoto Nonparametric Bayesian inference of the microcanonical stochastic block model. , 2016, Physical review. E.

[145]  Marcello Farina,et al.  Plug-and-play state estimation and application to distributed output-feedback model predictive control , 2015, Eur. J. Control.

[146]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[147]  Prodromos Daoutidis,et al.  Reprint of: Optimal decomposition for distributed optimization in nonlinear model predictive control through community detection , 2018, Comput. Chem. Eng..

[148]  Carl D. Laird,et al.  An interior-point method for efficient solution of block-structured NLP problems using an implicit Schur-complement decomposition , 2014, Comput. Chem. Eng..

[149]  Wotao Yin,et al.  Parallel Multi-Block ADMM with o(1 / k) Convergence , 2013, Journal of Scientific Computing.

[150]  Frank L. Lewis,et al.  Reinforcement Learning and Approximate Dynamic Programming for Feedback Control , 2012 .

[151]  Amir Beck,et al.  On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..

[152]  Georgios B. Giannakis,et al.  Residential Load Control: Distributed Scheduling and Convergence With Lost AMI Messages , 2012, IEEE Transactions on Smart Grid.

[153]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[154]  Christos G. Cassandras,et al.  Asynchronous Distributed Optimization With Event-Driven Communication , 2010, IEEE Transactions on Automatic Control.

[155]  Marios M. Polycarpou,et al.  A Distributed Networked Approach for Fault Detection of Large-Scale Systems , 2017, IEEE Transactions on Automatic Control.

[156]  Huiping Li,et al.  Event-triggered robust model predictive control of continuous-time nonlinear systems , 2014, Autom..

[157]  Georgios B. Giannakis,et al.  Distributed Robust Power System State Estimation , 2012, IEEE Transactions on Power Systems.

[158]  Prodromos Daoutidis,et al.  Microgrid/Macrogrid Energy Exchange: A Novel Market Structure and Stochastic Scheduling , 2017, IEEE Transactions on Smart Grid.

[159]  Moritz Diehl,et al.  CasADi -- A symbolic package for automatic differentiation and optimal control , 2012 .

[160]  Michael Baldea,et al.  Dynamics and control of chemical process networks: Integrating physics, communication and computation , 2013, Comput. Chem. Eng..

[161]  Nathan van de Wouw,et al.  Networked Control Systems With Communication Constraints: Tradeoffs Between Transmission Intervals, Delays and Performance , 2010, IEEE Transactions on Automatic Control.

[162]  Fengqi You,et al.  Optimal supply chain design and operations under multi-scale uncertainties: Nested stochastic robust optimization modeling framework and solution algorithm , 2016 .

[163]  Peter Richtárik,et al.  Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.

[164]  Prashant Mhaskar,et al.  Distributed fault diagnosis for networked nonlinear uncertain systems , 2018, Comput. Chem. Eng..

[165]  Prodromos Daoutidis,et al.  Network decomposition for distributed control through community detection in input–output bipartite graphs , 2018 .

[166]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[167]  Euhanna Ghadimi,et al.  Optimal Parameter Selection for the Alternating Direction Method of Multipliers (ADMM): Quadratic Problems , 2013, IEEE Transactions on Automatic Control.

[168]  José Mario Martínez,et al.  Practical augmented Lagrangian methods for constrained optimization , 2014, Fundamentals of algorithms.

[169]  Xianzhong Chen,et al.  Iterative Distributed Model Predictive Control of Nonlinear Systems: Handling Asynchronous, Delayed Measurements , 2012, IEEE Transactions on Automatic Control.

[170]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[171]  Zhanpeng Zhang,et al.  A deep belief network based fault diagnosis model for complex chemical processes , 2017, Comput. Chem. Eng..

[172]  Prodromos Daoutidis,et al.  Automated synthesis of control configurations for process networks based on structural coupling , 2015 .

[173]  Jongrae Kim,et al.  Compensation and stochastic modeling of discrete-time networked control systems with data packet disorder , 2012 .

[174]  Ohad Shamir,et al.  Communication-Efficient Distributed Optimization using an Approximate Newton-type Method , 2013, ICML.

[175]  Nathan van de Wouw,et al.  Tracking Control for Nonlinear Networked Control Systems , 2014, IEEE Transactions on Automatic Control.

[176]  I. Duff A survey of sparse matrix research , 1977, Proceedings of the IEEE.

[177]  Katalin M. Hangos,et al.  Optimal control structure selection for process systems , 2001 .

[178]  Daniel E. Quevedo,et al.  Input-to-State Stability of Packetized Predictive Control Over Unreliable Networks Affected by Packet-Dropouts , 2011, IEEE Transactions on Automatic Control.

[179]  Mark W. Schmidt,et al.  Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization , 2011, NIPS.

[180]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[181]  Jie Bao,et al.  Dissipativity based distributed control synthesis , 2013 .

[182]  Tomaso Erseghe,et al.  Distributed Optimal Power Flow Using ADMM , 2014, IEEE Transactions on Power Systems.

[183]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[184]  Huijun Gao,et al.  Network-Induced Constraints in Networked Control Systems—A Survey , 2013, IEEE Transactions on Industrial Informatics.

[185]  Dragoslav D. Šiljak,et al.  Large-Scale Dynamic Systems: Stability and Structure , 1978 .

[186]  Bart De Schutter,et al.  Accelerated gradient methods and dual decomposition in distributed model predictive control , 2013, Autom..