Information Integration in Institutions

This paper unifies and/or generalizes several approaches to information, including the information flow of Barwise and Seligman, the formal conceptual analysis of Wille, the lattice of theories of Sowa, the categorical general systems theory of Goguen, and the cognitive semantic theories of Fauconnier, Turner, Gärdenfors, and others. Its rigorous approach uses category theory to achieve independence from any particular choice of representation, and institutions to achieve independence from any particular choice of logic. Corelations and colimits provide a general formalization of information integration, and Grothendieck constructions extend this to several kinds of heterogeneity. Applications include modular programming, Curry-Howard isomorphism, database semantics, ontology alignment, cognitive semantics, and more.

[1]  F. Saussure,et al.  Course in General Linguistics , 1960 .

[2]  Joseph A. Goguen,et al.  A Study in the Functions of Programming Methodology: Specifications, Institutions, Charters and Parchments , 1985, CTCS.

[3]  Razvan Diaconescu,et al.  Herbrand theorems in arbitrary institutions , 2004, Inf. Process. Lett..

[4]  Joseph A. Goguen,et al.  Behavioral verification of distributed concurrent systems with BOBJ , 2003, Third International Conference on Quality Software, 2003. Proceedings..

[5]  Michael Barr,et al.  *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.

[6]  Joseph A. Goguen,et al.  Style as a Choice of Blending Principles , 2004, AAAI Technical Report.

[7]  J. Hintikka,et al.  What is Logic , 2007 .

[8]  Joseph A. Goguen,et al.  A categorical manifesto , 1989, Mathematical Structures in Computer Science.

[9]  Olivier Ridoux,et al.  A Logical Generalization of Formal Concept Analysis , 2000, ICCS.

[10]  Razvan Diaconescu Interpolation in Grothendieck Institutions , 2004, Theor. Comput. Sci..

[11]  J. Goguen An introduction to algebraic semiotics, with application to user interface design , 1999 .

[12]  Simon Thompson,et al.  Type theory and functional programming , 1991, International computer science series.

[13]  Till Mossakowski,et al.  An Institutional View on Categorical Logic and the Curry-Howard-Tait-Isomorphism , 2022 .

[14]  G. Lakoff,et al.  Philosophy in the flesh : the embodied mind and its challenge to Western thought , 1999 .

[15]  M. Clavel,et al.  Principles of Maude , 1996, WRLA.

[16]  Philip A. Bernstein,et al.  A Model Theory for Generic Schema Management , 2001, DBPL.

[17]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[18]  Joseph A. Goguen,et al.  Some Fundamental Algebraic Tools for the Semantics of Computation: Part 3: Indexed Categories , 1991, Theor. Comput. Sci..

[19]  Razvan Diaconescu,et al.  Institution-independent Ultraproducts , 2002, Fundam. Informaticae.

[20]  Joseph A. GoguenDepartment Towards a Social, Ethical Theory of Information 1 , 1997 .

[21]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[22]  Nicola Guarino,et al.  An Overview of OntoClean , 2004, Handbook on Ontologies.

[23]  Chris HILLMANContents WHAT IS A CONCEPT ? , 1998 .

[24]  Yuri Gurevich,et al.  Evolving algebras 1993: Lipari guide , 1995, Specification and validation methods.

[25]  Trevor J. M. Bench-Capon,et al.  Formalising Ontologies and Their Relations , 1999, DEXA.

[26]  Joseph A. Goguen,et al.  Principles of parameterized programming , 1989 .

[27]  Gilles Fauconnier,et al.  Mental Spaces: Aspects of Meaning Construction in Natural Language , 1985 .

[28]  Hong Bao,et al.  Information Flow based Ontology Mapping , 2008, 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing.

[29]  José Luiz Fiadeiro Categories for software engineering , 2005 .

[30]  G. Fauconnier,et al.  The Way We Think , 2002 .

[31]  Joseph A. Goguen,et al.  Sheaf semantics for concurrent interacting objects , 1992, Mathematical Structures in Computer Science.

[32]  Joseph A. Goguen,et al.  A Metadata Tool for Retrieval from Heterogeneous Distributed XML Documents , 2003, International Conference on Computational Science.

[33]  Joseph A. Goguen,et al.  Software Engineering with Obj: Algebraic Specification In Action , 2010 .

[34]  Razvan Diaconescu,et al.  Cafeobj Report - The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic Specification , 1998, AMAST Series in Computing.

[35]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[36]  N. Foo Conceptual Spaces—The Geometry of Thought , 2022 .

[37]  Will Tracz,et al.  An implementation-oriented semantics for module composition , 2000 .

[38]  J. Goguen Mathematical Models of Cognitive Space and Time , 2006 .

[39]  Till Mossakowski,et al.  Heterogeneous Specification and the Heterogeneous Tool Set , 2004 .

[40]  Robert E. Kent Distributed Conceptual Structures , 2001, RelMiCS.

[41]  Narciso Martí-Oliet,et al.  Maude: specification and programming in rewriting logic , 2002, Theor. Comput. Sci..

[42]  Douglas R. Woodall The λ—μ Problem , 1969 .

[43]  Yannis Kalfoglou,et al.  Ontology mapping: the state of the art , 2003, The Knowledge Engineering Review.

[44]  Benjamin C. Pierce,et al.  Basic category theory for computer scientists , 1991, Foundations of computing.

[45]  Jon Barwise,et al.  Information Flow: The Logic of Distributed Systems , 1997 .

[46]  José Meseguer,et al.  Order-Sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations , 1992, Theor. Comput. Sci..

[47]  G. L. Collected Papers , 1912, Nature.

[48]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[49]  Brian H. Mayoh,et al.  Galleries and Institutions , 1985 .

[50]  Joseph A. Goguen,et al.  Mathematical Representation of Hierarchically Organized Systems , 1970 .

[51]  Joseph A. Goguen,et al.  The Semantics of CLEAR, A Specification Language , 1979, Abstract Software Specifications.

[52]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[53]  David B. MacQueen,et al.  The Definition of Standard ML (Revised) , 1997 .

[54]  Yannis Kalfoglou,et al.  A Channel-Theoretic foundation for ontology coordination , 2004 .

[55]  Joseph A. Goguen,et al.  Types as theories , 1991 .

[56]  Razvan Diaconescu An Institution-independent Proof of Craig Interpolation Theorem , 2004, Stud Logica.

[57]  A. Pitts INTRODUCTION TO HIGHER ORDER CATEGORICAL LOGIC (Cambridge Studies in Advanced Mathematics 7) , 1987 .

[58]  Joseph A. Goguen,et al.  Data, Schema, Ontology and Logic Integration , 2005, Log. J. IGPL.

[59]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .