Pattern avoidance is not P-recursive

Let $F \subset S_k$ be a finite set of permutations and let $C_n(F)$ denote the number of permutations $\sigma$ in $S_n$ avoiding the set of patterns $F$. The Noonan-Zeilberger conjecture states that the sequence ${C_n(F)}$ is P-recursive. We use Computability Theory to disprove this conjecture.

[1]  Nikola Ruskuc,et al.  Simple permutations: Decidability and unavoidable substructures , 2008, Theor. Comput. Sci..

[2]  Régis Barbanchon,et al.  On unique graph 3-colorability and parsimonious reductions in the plane , 2004, Theor. Comput. Sci..

[3]  Stavros Garoufalidis,et al.  G-functions and multisum versus holonomic sequences , 2007, 0708.4354.

[4]  Robert L. Berger The undecidability of the domino problem , 1966 .

[5]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[6]  Martin Klazar,et al.  Overview of some general results in combinatorial enumeration , 2008, 0803.4292.

[7]  Igor Pak,et al.  Tile invariants: new horizons , 2003, Theor. Comput. Sci..

[8]  Joshua E. S. Socolar,et al.  An aperiodic hexagonal tile , 2010, J. Comb. Theory A.

[9]  Nicolas Ollinger Tiling the Plane with a Fixed Number of Polyominoes , 2009, LATA.

[10]  S. Elizalde A survey of consecutive patterns in permutations , 2015, 1504.07265.

[11]  Vincent Vatter,et al.  Enumeration Schemes for Restricted Permutations , 2005, Combinatorics, Probability and Computing.

[12]  Jay Pantone,et al.  Two Examples of Unbalanced Wilf-Equivalence , 2014 .

[13]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[14]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[15]  Sandy Irani,et al.  The Quantum and Classical Complexity of Translationally Invariant Tiling and Hamiltonian Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Jacob Fox,et al.  Stanley-Wilf limits are typically exponential , 2013, ArXiv.

[17]  Einar Steingrímsson,et al.  Some open problems on permutation patterns , 2012, Surveys in Combinatorics.

[18]  D. Zeilberger,et al.  The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.

[19]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[20]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[21]  Hao Wang,et al.  Proving theorems by pattern recognition I , 1960, Commun. ACM.

[22]  Andrew R. Conway,et al.  On 1324-avoiding permutations , 2015, Adv. Appl. Math..

[23]  M. Atkinson,et al.  The enumeration of simple permutations. , 2003, math/0304213.

[24]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[25]  Vincent Vatter,et al.  Permutation classes , 2014, 1409.5159.

[26]  Noga Alon,et al.  On the Number of Permutations Avoiding a Given Pattern , 2000, J. Comb. Theory, Ser. A.

[27]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[28]  Don Beal,et al.  An Answer , 1994, J. Int. Comput. Games Assoc..

[29]  M. W. Shields An Introduction to Automata Theory , 1988 .

[30]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[31]  Dániel Marx,et al.  Finding small patterns in permutations in linear time , 2013, SODA.

[32]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[33]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[34]  Sergey Kitaev,et al.  Patterns in Permutations and Words , 2011, Monographs in Theoretical Computer Science. An EATCS Series.

[35]  Murray Elder,et al.  Problems and conjectures presented at the Third International Conference on Permutation Patterns (University of Florida, March 7-11, 2005) , 2005 .

[36]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[37]  Lance Fortnow,et al.  NP might not be as easy as detecting unique solutions , 1997, STOC '98.

[38]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[39]  Miklós Bóna,et al.  Pattern-avoiding involutions: exact and asymptotic enumeration , 2013, Australas. J Comb..

[40]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[41]  Igor Pak,et al.  Partition bijections, a survey , 2006 .

[42]  Jed Yang Rectangular tileability and complementary tileability are undecidable , 2014, Eur. J. Comb..

[43]  Neil Immerman,et al.  Sparse sets in NP-P: Exptime versus nexptime , 1983, STOC.

[44]  M. Klazar Permutation Patterns: Some general results in combinatorial enumeration , 2010 .

[45]  Bruce E. Sagan,et al.  Pattern Avoidance in Set Partitions , 2006, Ars Comb..

[46]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[47]  Leslie G. Valiant,et al.  Accidental Algorithms , 2006, FOCS.

[48]  Darko Marinov,et al.  Counting 1324-Avoiding Permutations , 2003, Electron. J. Comb..

[49]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[50]  Philippe Flajolet,et al.  On the Non-Holonomic Character of Logarithms, Powers, and the nth Prime Function , 2005, Electron. J. Comb..

[51]  Avi Wigderson,et al.  Succinct Representations of Graphs , 1984, Inf. Control..

[52]  Scott Garrabrant,et al.  Words in Linear Groups, Random Walks, Automata and P-Recursiveness , 2015, 1502.06565.