Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

[1]  S. Saroja,et al.  Influence of Alloy Content and Prior Microstructure on Evolution of Secondary Phases in Weldments of 9Cr-Reduced Activation Ferritic-Martensitic Steel , 2015, Metallurgical and Materials Transactions A.

[2]  A. K. Bhaduri,et al.  Delta ferrite in the weld metal of reduced activation ferritic martensitic steel , 2014 .

[3]  T. Jayakumar,et al.  Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods , 2014 .

[4]  Chih-Chun Hsieh,et al.  Overview of Intermetallic Sigma () Phase Precipitation in Stainless Steels , 2012 .

[5]  B. Raj,et al.  Measurement of transformation temperatures and specific heat capacity of tungsten added reduced activation ferritic–martensitic steel , 2009 .

[6]  E. Diegele,et al.  The manufacturing technologies of the European breeding blankets , 2004 .

[7]  S. Albert,et al.  Creep rupture properties of HAZs of a high Cr ferritic steel simulated by a weld simulator , 2004 .

[8]  R. Klueh,et al.  High-Chromium Ferritic and Martensitic Steels for Nuclear Applications , 2001 .

[9]  S. K. Albert,et al.  A comparative evaluation of welding consumables for dissimilar welds between 316LN austenitic stainless steel and Alloy 800 , 2000 .

[10]  A. Çelik,et al.  Mechanical and structural properties of similar and dissimilar steel joints , 1999 .

[11]  R. Karppi,et al.  The application of electron beam welding for the joining of dissimilar metals: an overview , 1996 .

[12]  H. Bhadeshia,et al.  Solidification sequences in stainless steel dissimilar alloy welds , 1991 .