Functionals of Wiener Processes

Chapter 2 discusses scalar-and multidimensional processes which are based on the Wiener process, and consequently we apply them in the context of the benchmark approach introduced in Chap. 1. The first part of the chapter collects results from the literature on important functionals of scalar versions of the Wiener process, geometric Brownian motion, the Ornstein-Uhlenbeck process, and the geometric Ornstein-Uhlenbeck process. In the second part of the chapter we present the multidimensional versions of the results. The third part of the chapter demonstrates how to apply these results to compute important functionals under the benchmark approach introduced in Chap. 1. For purposes of illustration, we choose the Black-Scholes model, and show how to derive the formulas well-known from the classical risk-neutral literature under the benchmark approach. This illustrates that the benchmark approach can recover all the results known from the classical risk neutral literature, however, as we demonstrate in the next chapter, it can go beyond the classical risk-neutral paradigm.

[1]  A. Bensoussan On the theory of option pricing , 1984, Acta Applicandae Mathematicae.

[2]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[3]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[4]  William Margrabe The Value of an Option to Exchange One Asset for Another , 1978 .

[5]  M. Yor Exponential Functionals of Brownian Motion and Related Processes , 2001 .

[6]  R. Elliott,et al.  Advances in mathematical finance , 2007 .

[7]  P. Buchen The pricing of dual-expiry exotics , 2004 .

[8]  Jan Baldeaux,et al.  Static Replication of Forward-Start Claims and Realized Variance Swaps , 2010 .

[9]  Jr. Jonathan E. Ingersoll Digital Contracts: Simple Tools for Pricing Complex Derivatives , 2000 .

[10]  Song‐Ping Zhu An exact and explicit solution for the valuation of American put options , 2006 .

[11]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[12]  M. Yor On some exponential functionals of Brownian motion , 1992, Advances in Applied Probability.

[13]  E. Platen,et al.  Using Dynamic Copulae for Modeling Dependency in Currency Denominations of a Diversified World Stock Index , 2011 .

[14]  E. Platen,et al.  Laplace transform identities for diffusions, with applications to rebates and barrier options , 2007 .

[15]  H. P. Jr. Mackean,et al.  Appendix : A free boundary problem for the heat equation arising from a problem in mathematical economics , 1965 .

[16]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[17]  P. Moerbeke On optimal stopping and free boundary problems , 1973, Advances in Applied Probability.

[18]  I. Karatzas Optimization problems in the theory of continuous trading , 1989 .

[19]  R. Myneni The Pricing of the American Option , 1992 .

[20]  David M. Kreps,et al.  Martingales and arbitrage in multiperiod securities markets , 1979 .

[21]  I. Karatzas On the pricing of American options , 1988 .

[22]  J. Handley An Empirical Test of the Pricing of VPO Contracts , 2003 .

[23]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[24]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[25]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[26]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[27]  A. Borodin,et al.  Handbook of Brownian Motion - Facts and Formulae , 1996 .

[28]  J. Handley Variable Purchase Options , 2000 .

[29]  Nicolas Privault,et al.  THE DOTHAN PRICING MODEL REVISITED , 2010 .

[30]  M. Yor,et al.  Mathematical Methods for Financial Markets , 2009 .

[31]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .