Positivity, complex FIOs, and Toeplitz operators

We establish a characterization of complex linear canonical transformations that are positive with respect to a pair of strictly plurisubharmonic quadratic weights. As an application, we show that the boundedness of a class of Toeplitz operators on the Bargmann space is implied by the boundedness of their Weyl symbols.

[1]  Fock Space , 2020, An Interpretive Introduction to Quantum Field Theory.

[2]  L. Coburn Fock Space, the Heisenberg Group, Heat Flow, and Toeplitz Operators , 2019, Handbook of Analytic Operator Theory.

[3]  M. Hitrik,et al.  From semigroups to subelliptic estimates for quadratic operators , 2015, 1510.02072.

[4]  M. Hitrik,et al.  Two minicourses on analytic microlocal analysis , 2015, 1508.00649.

[5]  L. Rodino,et al.  Propagation of Gabor singularities for Schrödinger equations with quadratic Hamiltonians , 2014, 1411.0251.

[6]  A. Aleman,et al.  On weak and strong solution operators for evolution equations coming from quadratic operators , 2014, 1409.1262.

[7]  M. Hitrik,et al.  Quadratic -symmetric operators with real spectrum and similarity to self-adjoint operators , 2012, 1204.6605.

[8]  M. Hitrik,et al.  Resolvent estimates for elliptic quadratic differential operators , 2011, 1109.4497.

[9]  M. Hitrik,et al.  Spectra and semigroup smoothing for non-elliptic quadratic operators , 2007, 0712.0819.

[10]  Christiaan C. Stolk,et al.  Semiclassical Analysis for the Kramers–Fokker–Planck Equation , 2004, math/0406275.

[11]  M. Zworski,et al.  Pseudospectra of semiclassical (pseudo‐) differential operators , 2004 .

[12]  J. Sjoestrand,et al.  Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2 , 2001, math/0111293.

[13]  L. Hörmander Symplectic classification of quadratic forms, and general Mehler formulas , 1995 .

[14]  C. Berger,et al.  HEAT FLOW AND BEREZIN-TOEPLITZ ESTIMATES , 1994 .

[15]  V. Guillemin Toeplitz operators in n-dimensions , 1984 .

[16]  L. Hörmander L2 estimates for Fourier integral operators with complex phase , 1983 .

[17]  J. Ralston On the construction of quasimodes associated with stable periodic orbits , 1976 .

[18]  Johannes Sjöstrand,et al.  Parametrices for pseudodifferential operators with multiple characteristics , 1974 .

[19]  R. Wells,et al.  Zero sets of non-negative strictly plurisubharmonic functions , 1973 .

[20]  L. Hörmander Differential equations without solutions , 1960 .

[21]  L. Hörmander On the Legendre and Laplace transformations , 1997 .

[22]  Vasili M. Babič,et al.  Short-Wavelength Diffraction Theory , 1991 .