Chlorosome antenna complexes from green photosynthetic bacteria

[1]  M. Yokono,et al.  Specific Gene bciD for C7-Methyl Oxidation in Bacteriochlorophyll e Biosynthesis of Brown-Colored Green Sulfur Bacteria , 2013, PloS one.

[2]  Robert Eugene Blankenship,et al.  Spectroscopic insights into the decreased efficiency of chlorosomes containing bacteriochlorophyll f. , 2013, Biochimica et biophysica acta.

[3]  Hugo Scheer,et al.  Extending the limits of natural photosynthesis and implications for technical light harvesting , 2013 .

[4]  D. Bryant,et al.  [2Fe-2S] proteins in Chlorosomes: CsmI and CsmJ participate in light-dependent control of energy transfer in Chlorosomes of Chlorobaculum tepidum. , 2013, Biochemistry.

[5]  J. Loeffler,et al.  Direct interaction studies between Aspergillus fumigatus and human immune cells; what have we learned about pathogenicity and host immunity? , 2012, Front. Microbio..

[6]  V. Urban,et al.  Sol–gel entrapped light harvesting antennas: immobilization and stabilization of chlorosomes for energy harvesting , 2012 .

[7]  J. Harada,et al.  A seventh bacterial chlorophyll driving a large light-harvesting antenna , 2012, Scientific Reports.

[8]  Vivek B. Shah,et al.  Characterization and deposition of various light-harvesting antenna complexes by electrospray atomization , 2012, Analytical and Bioanalytical Chemistry.

[9]  Robert Eugene Blankenship,et al.  Bacteriochlorophyll f: properties of chlorosomes containing the “forbidden chlorophyll” , 2012, Front. Microbio..

[10]  Jakub Dostál,et al.  Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. , 2012, Journal of the American Chemical Society.

[11]  Alán Aspuru-Guzik,et al.  Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria. , 2012, The journal of physical chemistry letters.

[12]  F. Buda,et al.  Structural variability in wild-type and bchQ bchR mutant chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. , 2012, Biochemistry.

[13]  J. Linnanto,et al.  Excitation Energy Transfer in Isolated Chlorosomes from Chlorobaculum tepidum and Prosthecochloris aestuarii , 2012, Photochemistry and photobiology.

[14]  Hooi Ling Kee,et al.  Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 3: The Distinctive Impact of Auxochromes at the 7‐ versus 3‐Positions , 2012, Photochemistry and photobiology.

[15]  C. Tamerler,et al.  Fabrication of hierarchical hybrid structures using bio‐enabled layer‐by‐layer self‐assembly , 2012, Biotechnology and bioengineering.

[16]  T. Polívka,et al.  Self-assembly and energy transfer in artificial light-harvesting complexes of bacteriochlorophyll c with astaxanthin , 2012, Photosynthesis Research.

[17]  T. Sharkey Advances in photosynthesis and respiration , 2012, Photosynthesis Research.

[18]  T. Balaban,et al.  Anisotropic organization and microscopic manipulation of self-assembling synthetic porphyrin microrods that mimic chlorosomes: bacterial light-harvesting systems. , 2012, Journal of the American Chemical Society.

[19]  Stefan Schouten,et al.  Identification of the Bacteriochlorophylls, Carotenoids, Quinones, Lipids, and Hopanoids of “Candidatus Chloracidobacterium thermophilum” , 2011, Journal of bacteriology.

[20]  F. Kopnov,et al.  Electron transport between photosystem II and photosystem I encapsulated in sol-gel glasses. , 2011, Angewandte Chemie.

[21]  M. Gross,et al.  Hydrogen-deuterium exchange mass spectrometry reveals the interaction of Fenna-Matthews-Olson protein and chlorosome CsmA protein. , 2011, Biochemistry.

[22]  J. Lindsey,et al.  De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls , 2011 .

[23]  G. Oostergetel,et al.  Ultrastructural Analysis and Identification of Envelope Proteins of “Candidatus Chloracidobacterium thermophilum” Chlorosomes , 2011, Journal of bacteriology.

[24]  A. Pandit,et al.  Solid-state NMR applied to photosynthetic light-harvesting complexes , 2011, Photosynthesis Research.

[25]  A. Lapidus,et al.  Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus , 2011, BMC Genomics.

[26]  Zhenfeng Liu,et al.  IDENTIFICATION OF A GENE ESSENTIAL FOR THE FIRST COMMITTED STEP IN THE BIOSYNTHESIS OF BACTERIOCHLOROPHYLL c* , 2011 .

[27]  J. Harada,et al.  In vitro synthesis and characterization of bacteriochlorophyll-f and its absence in bacteriochlorophyll-e producing organisms , 2011, Photosynthesis Research.

[28]  Robert Eugene Blankenship,et al.  Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls , 2010, Photosynthesis Research.

[29]  T. Polívka,et al.  β-Carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking chlorosomes , 2010 .

[30]  J. Overmann,et al.  Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. , 2010, Environmental microbiology.

[31]  G. Oostergetel,et al.  The chlorosome: a prototype for efficient light harvesting in photosynthesis , 2010, Photosynthesis Research.

[32]  P. Biswas,et al.  Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device , 2010 .

[33]  N. Nielsen,et al.  A model of the protein–pigment baseplate complex in chlorosomes of photosynthetic green bacteria , 2010, Photosynthesis Research.

[34]  T. Fujiwara,et al.  Atomic structure of the bacteriochlorophyll c assembly in intact chlorosomes from Chlorobium limicola determined by solid-state NMR , 2010, Photosynthesis Research.

[35]  D. Bryant,et al.  Envelope Proteins of the CsmB/CsmF and CsmC/CsmD Motif Families Influence the Size, Shape, and Composition of Chlorosomes in Chlorobaculum tepidum , 2009, Journal of bacteriology.

[36]  R. Tuma,et al.  Structure of Chlorosomes from the Green Filamentous Bacterium Chloroflexus aurantiacus , 2009, Journal of bacteriology.

[37]  Donald A. Bryant,et al.  Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes , 2009, Proceedings of the National Academy of Sciences.

[38]  Győző Garab,et al.  Linear dichroism and circular dichroism in photosynthesis research , 2009, Photosynthesis Research.

[39]  Mette Miller,et al.  The three‐dimensional structure of CsmA: A small antenna protein from the green sulfur bacterium Chlorobium tepidum , 2008, FEBS letters.

[40]  G. Allmaier,et al.  Nano ES GEMMA and PDMA, new tools for the analysis of nanobioparticles—Protein complexes, lipoparticles, and viruses , 2008, Journal of the American Society for Mass Spectrometry.

[41]  J. Linnanto,et al.  Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates , 2008, Photosynthesis Research.

[42]  R. P. Cox,et al.  Chlorosome lipids from Chlorobium tepidum: characterization and quantification of polar lipids and wax esters , 2008, Photosynthesis Research.

[43]  Robert Eugene Blankenship The Basic Principles of Photosynthetic Energy Storage , 2008 .

[44]  O. Wilner,et al.  Fabrication of Oriented Multilayers of Photosystem I Proteins on Solid Surfaces by Auto‐Metallization , 2008 .

[45]  V. Subramaniam,et al.  Directed assembly of functional light harvesting antenna complexes onto chemically patterned surfaces , 2008, Nanotechnology.

[46]  Mette Miller,et al.  A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a. , 2008, Biochemistry.

[47]  G. Oostergetel,et al.  Long‐range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo‐electron microscopy , 2007, FEBS letters.

[48]  S. Itoh,et al.  Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes chlorosomes of green photosynthetic bacteria. , 2007, The journal of physical chemistry. B.

[49]  Donald A. Bryant,et al.  Candidatus Chloracidobacterium thermophilum: An Aerobic Phototrophic Acidobacterium , 2007, Science.

[50]  T. Balaban,et al.  Photosensitization of TiO2 and SnO2 by Artificial Self-Assembling Mimics of the Natural Chlorosomal Bacteriochlorophylls , 2007 .

[51]  D. Bryant,et al.  Bacteriochlorophyllide c C-82 and C-121 Methyltransferases Are Essential for Adaptation to Low Light in Chlorobaculum tepidum , 2007, Journal of bacteriology.

[52]  Robert Eugene Blankenship,et al.  Hypothesis on chlorosome biogenesis in green photosynthetic bacteria , 2007, FEBS letters.

[53]  T. Fujiwara,et al.  Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR , 2007, Proceedings of the National Academy of Sciences.

[54]  C. Grunwald,et al.  Light-Driven Water Splitting for (Bio-)Hydrogen Production: Photosystem 2 as the Central Part of a Bioelectrochemical Device , 2006, Photochemistry and photobiology.

[55]  P. Højrup,et al.  The light-harvesting antenna of Chlorobium tepidum: Interactions between the FMO protein and the major chlorosome protein CsmA studied by surface plasmon resonance , 2006, Photosynthesis Research.

[56]  Roman Tuma,et al.  Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly. , 2006, Biophysical journal.

[57]  D. Bryant,et al.  Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum. , 2006, Biochemistry.

[58]  Hui Li ORGANIZATION AND FUNCTION OF CHLOROSOME PROTEINS IN THE GREEN SULFUR BACTERIUM CHLOROBIUM TEPIDUM , 2006 .

[59]  Pratim Biswas,et al.  Charge reduced electrospray size spectrometry of mega- and gigadalton complexes: whole viruses and virus fragments. , 2006, Analytical chemistry.

[60]  M. Kuypers,et al.  Physiology and Phylogeny of Green Sulfur Bacteria Forming a Monospecific Phototrophic Assemblage at a Depth of 100 Meters in the Black Sea , 2005, Applied and Environmental Microbiology.

[61]  H. Frank,et al.  Isolation and Characterization of Carotenosomes from a Bacteriochlorophyll c-less Mutant ofChlorobium tepidum , 2005, Photosynthesis Research.

[62]  T. Balaban Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. , 2005, Accounts of chemical research.

[63]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Carlo Montemagno,et al.  Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix , 2005, Nature materials.

[65]  R. Tuma,et al.  Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. , 2004, Biophysical journal.

[66]  D. Bryant,et al.  The bchU Gene of Chlorobium tepidum Encodes the C-20 Methyltransferase in Bacteriochlorophyll c Biosynthesis , 2004, Journal of bacteriology.

[67]  D. Bryant,et al.  Nine Mutants of Chlorobium tepidum Each Unable To Synthesize a Different Chlorosome Protein Still Assemble Functional Chlorosomes , 2004, Journal of bacteriology.

[68]  Juha Linnanto,et al.  Semiempirical PM5 molecular orbital study on chlorophylls and bacteriochlorophylls: Comparison of semiempirical, ab initio, and density functional results , 2004, J. Comput. Chem..

[69]  A. Holzwarth,et al.  Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra. , 2003, Biophysical journal.

[70]  V. Pizziconi,et al.  Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. , 2003, Biophysical journal.

[71]  Robert Eugene Blankenship,et al.  Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. , 2003, Biochemistry.

[72]  J. Imhoff Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. , 2003, International journal of systematic and evolutionary microbiology.

[73]  T. Gillbro,et al.  Excitation energy transfer dynamics and excited-state structure in chlorosomes of Chlorobium phaeobacteroides. , 2003, Biophysical journal.

[74]  E. Vassilieva,et al.  Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. , 2002, Biochemistry.

[75]  P. Taylor The effects of substituents , 2002 .

[76]  Anders Hagfeldt,et al.  Optimization of dye-sensitized solar cells prepared by compression method , 2002 .

[77]  V. Novoderezhkin,et al.  Unit building block of the oligomeric chlorosomal antenna of the green photosynthetic bacterium Chloroflexus aurantiacus: modeling of nonlinear optical spectra , 2001 .

[78]  B. Zybailov,et al.  Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe-2S ferredoxins. , 2001, Biochemistry.

[79]  C. Borrego,et al.  Nanosecond Laser Photolysis Studies of Chlorosomes and Artificial Aggregates Containing Bacteriochlorophyll e: Evidence for the Proximity of Carotenoids and Bacteriochlorophyll a in Chlorosomes from Chlorobium phaeobacteroides strain CL1401¶ , 2000 .

[80]  A. Holzwarth,et al.  Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. , 2000, Biophysical journal.

[81]  C. Bauer,et al.  Molecular evidence for the early evolution of photosynthesis. , 2000, Science.

[82]  N. Frigaard,et al.  Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. , 1999, Biochimica et biophysica acta.

[83]  Kazuichi Yoshida,et al.  Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[84]  I. V. van Stokkum,et al.  The organization of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus and the structural role of carotenoids and protein , 1997, Photosynthesis Research.

[85]  S. Takaichi,et al.  Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates , 1997, Archives of Microbiology.

[86]  O. Somsen,et al.  Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. , 1996, Biophysical journal.

[87]  Robert Eugene Blankenship,et al.  Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. , 1996, The Journal of physical chemistry.

[88]  T. Balaban,et al.  CP-MAS 13C-NMR dipolar correlation spectroscopy of 13C-enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: the self-organization of pigments is the main structural feature of chlorosomes. , 1995, Biochemistry.

[89]  A. Holzwarth,et al.  On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study , 1994, Photosynthesis Research.

[90]  H. Zuber,et al.  Genes encoding two chlorosome components from the green sulfur bacteriaChlorobium vibrioforme strain 8327D andChlorobium tepidum , 1994, Photosynthesis Research.

[91]  N. W. Smith,et al.  Structure and conformation of photosynthetic pigments and related compounds. 5. Structural investigation of nickel(II) bacteriopetroporphyrins related to the bacteriochlorophylls c and d: evidence for localized conformational distortion in the c-series , 1993 .

[92]  Robert Eugene Blankenship,et al.  Förster energy transfer in chlorosomes of green photosynthetic bacteria. , 1992, Journal of photochemistry and photobiology. B, Biology.

[93]  W. Schäfer,et al.  Bacteriochlorophylls modified at position C-3: long-range intramolecular interaction with position C-132 , 1992 .

[94]  J S Valentine,et al.  Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. , 1992, Science.

[95]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[96]  R. Fuller,et al.  Gene encoding the 5.7-kilodalton chlorosome protein of Chloroflexus aurantiacus: regulated message levels and a predicted carboxy-terminal protein extension , 1990, Journal of bacteriology.

[97]  K. Smith,et al.  Biosynthetic studies of substituent homologation in bacteriochlorophylls c and d. , 1990, Biochemistry.

[98]  N. Pfennig,et al.  Red shift of absorption maxima in chlorobiineae through enzymic methylation of their antenna bacteriochlorophylls. , 1990, Biochemistry.

[99]  A. Holzwarth,et al.  A Photosynthetic Antenna System which Contains a Protein-Free Chromophore Aggregate , 1990 .

[100]  Robert Eugene Blankenship,et al.  Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. , 1990, Biochimica et biophysica acta.

[101]  I. Yamazaki,et al.  Excitation energy flow in chlorosome antennas of green photosynthetic bacteria , 1989 .

[102]  M. Thewalt,et al.  Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus. , 1987, Biochemistry.

[103]  Robert Eugene Blankenship,et al.  Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. , 1987, Biochemistry.

[104]  J. Olson,et al.  A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. , 1986, Biochimica et biophysica acta.

[105]  R. Fuller,et al.  Topography of the photosynthetic apparatus of Chloroflexus aurantiacus , 1984 .

[106]  Kevin M. Smith,et al.  Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria , 1983 .

[107]  L. Natarajan,et al.  Antenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus aurantiacus , 1982 .

[108]  L. Staehelin,et al.  Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. , 1980, Biochimica et biophysica acta.

[109]  Krasnovskiĭ Aa,et al.  [Molecular mechanism of self-assembly of aggregated bacteriochlorophyll c]. , 1979, Molekuliarnaia biologiia.

[110]  L. Staehelin,et al.  Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus , 1978, Archives of Microbiology.

[111]  J. Ormerod,et al.  Isolation of a bchl c mutant from Chlorobium with bchl d by cultivation at low light intensity , 1978 .

[112]  G. Cohen-bazire,et al.  THE FINE STRUCTURE OF GREEN BACTERIA , 1964, The Journal of cell biology.

[113]  Christian G. Klatt,et al.  Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi , Chloroflexi , and Acidobacteria , 2012 .

[114]  R. Burnap,et al.  Functional Genomics and Evolution of Photosynthetic Systems , 2012, Advances in Photosynthesis and Respiration.

[115]  M. Gross,et al.  Structural model and spectroscopic characteristics of the FMO antenna protein from the aerobic chlorophototroph, Candidatus Chloracidobacterium thermophilum. , 2011, Biochimica et biophysica acta.

[116]  Philip D. Welch,et al.  Σ * Fine Structure , 2010 .

[117]  D. Bryant,et al.  Chlorosomes: Antenna Organelles in Photosynthetic Green Bacteria , 2006 .

[118]  T. Gillbro,et al.  Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids , 2004, Photosynthesis Research.

[119]  N. Pfennig,et al.  A new bacteriochlorophyll from brown-colored chlorobiaceae , 2004, Archives of Microbiology.

[120]  E. Vassilieva,et al.  Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme , 2004, Photosynthesis Research.

[121]  C. Borrego,et al.  Determination of the topography and biometry of chlorosomes by atomic force microscopy , 2004, Photosynthesis Research.

[122]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[123]  W. M. Foster,et al.  EFFECTS OF OXIDANTS , 1999 .

[124]  J. Suzuki,et al.  Genetic analysis of chlorophyll biosynthesis. , 1997, Annual review of genetics.

[125]  J. Olson,et al.  Antenna Complexes from Green Photosynthetic Bacteria , 1995 .

[126]  M. Madigan,et al.  Anoxygenic Photosynthetic Bacteria , 1995, Advances in Photosynthesis and Respiration.

[127]  G. Britton Biosynthesis of carotenoids , 1993 .

[128]  Robert Eugene Blankenship Antenna organization in green photosynthetic bacteria , 1987 .

[129]  D. M. Harrison The biosynthesis of carotenoids. , 1986, Natural product reports.

[130]  A. Krasnovsky,et al.  Self-assembly of chlorophyll aggregated structures. , 1980, Bio Systems.

[131]  A. Krasnovskiî,et al.  [Molecular mechanism of self-assembly of aggregated bacteriochlorophyll c]. , 1979, Molekuliarnaia biologiia.

[132]  W. R. Sistrom,et al.  The photosynthetic bacteria , 1978 .

[133]  N. Bohr Atomic Structure , 1921, Nature.

[134]  Howard C. Berg,et al.  Genetic analysis , 1957, Nature Biotechnology.