A stochastic model for commodity pairs trading

In this study, we introduce an optimal pairs trading model and verify its performance in the commodity futures markets. Empirical evidence from commodity futures indicates the existence of significant mean reversion together with high peak and fat tails for the distribution of spread residuals. Therefore, we assume an Ornstein–Uhlenbeck process with the noise term driven by a Lévy process with generalized hyperbolic distributed marginals. Our model not only provides trading signals, but also can be considered as a pair screening technique to rank all potential pairs for trade priority in terms of the distance to the expected profit-maximizing thresholds. Empirical examples and backtesting results obtained from commodity futures data show strong support for the profitability of the model even in the presence of transaction costs.

[1]  Fred Espen Benth,et al.  Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives , 2005 .

[2]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[3]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[4]  Nicolas Huck The high sensitivity of pairs trading returns , 2013 .

[5]  William N. Goetzmann,et al.  Pairs Trading: Performance of a Relative Value Arbitrage Rule , 1998 .

[6]  Mark C. Hutchinson,et al.  Pairs trading in the UK equity market: risk and return , 2014 .

[7]  Timofei Bogomolov,et al.  Pairs trading based on statistical variability of the spread process , 2013 .

[8]  Hossein Rad,et al.  The Profitability of Pairs Trading Strategies: Distance, Cointegration, and Copula Methods , 2015 .

[9]  Ahmet Goncu,et al.  Statistical Arbitrage with Pairs Trading , 2016 .

[10]  R. Faff,et al.  Are Pairs Trading Profits Robust to Trading Costs , 2012 .

[11]  Purnendu Nath,et al.  High Frequency Pairs Trading with U.S. Treasury Securities: Risks and Rewards for Hedge Funds , 2003 .

[12]  M. Avellaneda,et al.  Statistical arbitrage in the US equities market , 2010 .

[13]  Chi-Guhn Lee,et al.  Pairs trading: optimal thresholds and profitability , 2014 .

[14]  B. Lucey,et al.  The structure of gold and silver spread returns , 2013 .

[15]  Mark Whistler,et al.  Trading Pairs: Capturing Profits and Hedging Risk with Statistical Arbitrage Strategies , 2004 .

[16]  Statistical arbitrage in the Black–Scholes framework , 2014, 1406.5646.

[17]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[18]  W. P. Malcolm,et al.  Pairs trading , 2005 .

[19]  Amir F. Atiya,et al.  Efficient Estimation of First Passage Time Density Function for Jump-Diffusion Processes , 2005, SIAM J. Sci. Comput..

[20]  R. Faff,et al.  Does Simple Pairs Trading Still Work? , 2010 .

[21]  Yan-Xia Lin,et al.  Loss protection in pairs trading through minimum profit bounds: A cointegration approach , 2006, Adv. Decis. Sci..

[22]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[23]  Nicolas Huck,et al.  Pairs trading and selection methods: is cointegration superior? , 2015 .

[24]  G. Vidyamurthy Pairs Trading: Quantitative Methods and Analysis , 2004 .

[25]  Mark Cummins,et al.  Quantitative Spread Trading on Crude Oil and Refined Products Markets , 2011 .

[26]  Douglas S. Ehrman,et al.  The Handbook of Pairs Trading: Strategies Using Equities, Options, and Futures , 2006 .

[27]  Robert A. Jarrow,et al.  Testing Market Efficiency Using Statistical Arbitrage with Applications to Momentum and Value Strategies , 2003 .

[28]  S. Finch Ornstein-Uhlenbeck Process , 2004 .

[29]  Yaozhong Hu,et al.  Parameter estimation for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions , 2007 .