A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium

SUMMARY Full waveform inversion (FWI) of surface seismic data requires low-frequency and long-offset data, namely diving waves or post-critical reflections, to update the long wavelength features of the parameters. In most geological settings, short and long offsets cannot be interpreted simultaneously without accounting for anisotropy. FWI therefore may require anisotropic modelling, which leads to the question of the parametrization of the inversion, since it is not possible to retrieve all the earth models from pressure (or vertical displacement) data, even in the simple vertical transversely isotropic (VTI) case. With a change of variables in the acoustic VTI wave equations, it can be shown that, in the context of macromodel building, namely background estimation, acoustic VTI FWI mainly depends on the normal moveout (NMO) velocity and the horizontal velocity (or equivalently a combination of these two velocities). An analysis of the eigenvalue/eigenvector decomposition of the Hessian confirms the relevance of the parametrization of the VTI wave equations with the NMO and horizontal velocities. It also points out a possible ambiguity when one inverts for two parameters. This ambiguity is further illustrated in synthetic examples. The trade-off between velocity heterogeneities and anisotropy also complicates the recovery of the second anisotropic parameter η. Nevertheless, FWI successfully interprets the kinematics of the data.

[1]  O. Ghattas,et al.  A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion , 2008 .

[2]  R. Plessix A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .

[3]  Tariq Alkhalifah,et al.  Velocity analysis for transversely isotropic media , 1995 .

[4]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[5]  P. Mora Elastic wave‐field inversion of reflection and transmission data , 1988 .

[6]  Tariq Alkhalifah,et al.  The space–time domain: theory and modelling for anisotropic media , 2001 .

[7]  Jean Virieux,et al.  Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt , 2004 .

[8]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[9]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[10]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[11]  Andreas Fichtner,et al.  Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods , 2009 .

[12]  N. Banik Velocity anisotropy of shales and depth estimation in the North Sea basin , 1984 .

[13]  R. Plessix,et al.  Frequency-domain finite-difference amplitude-preserving migration , 2004 .

[14]  T. Sears,et al.  Elastic full waveform inversion of multi‐component OBC seismic data , 2008 .

[15]  R. Plessix,et al.  Anisotropic migration weight for amplitude-preserving migration and sensitivity analysis , 2004 .

[16]  G. McMechan,et al.  2‐D full‐wavefield inversion for wide‐aperture, elastic, seismic data , 1992 .

[17]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  Tariq Alkhalifah,et al.  Acoustic approximations for processing in transversely isotropic media , 1998 .

[20]  Marwan Charara,et al.  Feasibility study for an anisotropic full waveform inversion of cross‐well seismic data , 2008 .

[21]  R. G. Pratt,et al.  Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model , 2007 .

[22]  Linbin Zhang,et al.  Shear waves in acoustic anisotropic media , 2004 .

[23]  R. Shipp,et al.  Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data , 2002 .

[24]  Tariq Alkhalifah,et al.  An acoustic wave equation for anisotropic media , 2000 .

[25]  René-Édouard Plessix,et al.  A Helmholtz iterative solver for 3D seismic-imaging problems , 2007 .

[26]  Ilya Tsvankin,et al.  Nonhyperbolic reflection moveout in anisotropic media , 1994 .

[27]  L. Thomsen Weak elastic anisotropy , 1986 .

[28]  Dong-Joo Min,et al.  Frequency-domain elastic full waveform inversion for VTI media , 2010 .

[29]  René-Édouard Plessix,et al.  Quantitative estimate of VTI parameters from AVA responses , 2000 .

[30]  R. Plessix Three-dimensional frequency-domain full-waveform inversion with an iterative solver , 2009 .

[31]  Vladimir Grechka,et al.  Feasibility of nonhyperbolic moveout inversion in transversely isotropic media , 1998 .

[32]  Olav I. Barkved,et al.  Thematic Set: Full waveform inversion: the next leap forward in imaging at Valhall , 2010 .

[33]  Jean Virieux,et al.  Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media , 2009 .

[34]  S. Operto,et al.  Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion , 2009 .

[35]  J. Virieux,et al.  Multiscale seismic imaging of the eastern Nankai trough by full waveform inversion , 2004 .

[36]  N. Banik An effective anisotropy parameter in transversely isotropic media , 1987 .

[37]  R. Plessix,et al.  Thematic Set: Full waveform inversion of a deep water ocean bottom seismometer dataset , 2010 .

[38]  R. G. Pratt,et al.  Two‐dimensional velocity models from wide‐angle seismic data by wavefield inversion , 1996 .