Convex Analysis for Minimizing and Learning Submodular Set Functions

The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions. First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques. Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set. Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.

[1]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[2]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[3]  Peter C. Fishburn,et al.  INTERDEPENDENCE AND ADDITIVITY IN MULTIVARIATE, UNIDIMENSIONAL EXPECTED UTILITY TIHEORY* , 1967 .

[4]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[5]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[6]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[7]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[8]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[9]  Alexander K. Kelmans,et al.  Multiplicative submodularity of a matrix's principal minor as a function of the set of its rows and some combinatorial applications , 1983, Discret. Math..

[10]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[11]  Panos M. Pardalos,et al.  An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds , 1990, Math. Program..

[12]  藤重 悟 Submodular functions and optimization , 1991 .

[13]  Peter L. Hammer,et al.  Approximations of pseudo-Boolean functions; applications to game theory , 1992, ZOR Methods Model. Oper. Res..

[14]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[15]  David S. Johnson,et al.  Network Flows and Matching: First DIMACS Implementation Challenge , 1993 .

[16]  Yishay Mansour,et al.  Learning Boolean Functions via the Fourier Transform , 1994 .

[17]  Vladimir Grebinski,et al.  Optimal Reconstruction of Graphs under the Additive Model , 1997, Algorithmica.

[18]  Maurice Queyranne,et al.  Minimizing symmetric submodular functions , 1998, Math. Program..

[19]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[20]  Michel Grabisch,et al.  Equivalent Representations of Set Functions , 2000, Math. Oper. Res..

[21]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[22]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[23]  M. Teboulle,et al.  Asymptotic cones and functions in optimization and variational inequalities , 2002 .

[24]  Satoru Iwata,et al.  A fully combinatorial algorithm for submodular function minimization , 2001, SODA '02.

[25]  Satoru Iwata,et al.  A push-relabel framework for submodular function minimization and applications to parametric optimization , 2003, Discret. Appl. Math..

[26]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[27]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Noga Alon,et al.  Learning a Hidden Matching , 2004, SIAM J. Comput..

[29]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[30]  Dana Angluin,et al.  Learning a Hidden Graph Using O(log n) Queries Per Edge , 2004, COLT.

[31]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[32]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[33]  Daniel Freedman,et al.  Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  Peter L. Hammer,et al.  Submodularity, Supermodularity, and Higher-Order Monotonicities of Pseudo-Boolean Functions , 2005, Math. Oper. Res..

[35]  Marc Teboulle,et al.  Interior Gradient and Proximal Methods for Convex and Conic Optimization , 2006, SIAM J. Optim..

[36]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[37]  M. Stealey,et al.  High Resolution River Hydraulic and Water Quality Characterization Using Rapidly Deployable Networked Infomechanical Systems (NIMS RD) , 2007 .

[38]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[39]  Pushmeet Kohli,et al.  P3 & Beyond: Solving Energies with Higher Order Cliques , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Satoru Iwata,et al.  Computational geometric approach to submodular function minimization for multiclass queueing systems , 2007, IPCO.

[41]  Fabián A. Chudak,et al.  Efficient solutions to relaxations of combinatorial problems with submodular penalties via the Lovász extension and non-smooth convex optimization , 2007, SODA '07.

[42]  Jeong Han Kim,et al.  Optimal query complexity bounds for finding graphs , 2008, Artif. Intell..

[43]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[44]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Kyomin Jung,et al.  Almost Tight Upper Bound for Finding Fourier Coefficients of Bounded Pseudo- Boolean Functions , 2008, COLT.

[46]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[47]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[48]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[49]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[50]  Satoru Iwata,et al.  A simple combinatorial algorithm for submodular function minimization , 2009, SODA.

[51]  S. Fujishige,et al.  A Submodular Function Minimization Algorithm Based on the Minimum-Norm Base ⁄ , 2009 .

[52]  Vahab S. Mirrokni,et al.  Approximating submodular functions everywhere , 2009, SODA.

[53]  Francis R. Bach,et al.  Structured sparsity-inducing norms through submodular functions , 2010, NIPS.

[54]  Hanna Mazzawi,et al.  Optimally reconstructing weighted graphs using queries , 2010, SODA '10.

[55]  Andreas Krause,et al.  Efficient Minimization of Decomposable Submodular Functions , 2010, NIPS.

[56]  S. Foucart A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .

[57]  Nader H. Bshouty,et al.  Optimal Query Complexity for Reconstructing Hypergraphs , 2010, STACS.

[58]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[59]  Andreas Krause,et al.  SFO: A Toolbox for Submodular Function Optimization , 2010, J. Mach. Learn. Res..

[60]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[61]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[62]  Pravesh Kothari,et al.  Submodular functions are noise stable , 2012, SODA.

[63]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[64]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[65]  Maria-Florina Balcan,et al.  Learning submodular functions , 2010, ECML/PKDD.

[66]  Hui Lin,et al.  On fast approximate submodular minimization , 2011, NIPS.

[67]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[68]  Gary Gordon,et al.  Matroids: A Geometric Introduction , 2012 .

[69]  Andreas Krause,et al.  Learning Fourier Sparse Set Functions , 2012, AISTATS.

[70]  Francis R. Bach,et al.  Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..