Carbon Fibers and Their Composites

Traditionally, the application of carbon fibers has been limited to very special fields such as aerospace and military because of their high cost. However, various techniques for low-cost carbon fibers are under development in terms of using low-cost precursors, low-cost manufacturing processes, and even functional coating methods. Moreover, future applications of carbon fibers can widen not only as structural reinforcements but also in information technology-based applications such as housings for electric devices, smart cloths, and healthcare items. In this chapter, we will cover the carbon fibers and their composites in recent various applications. In particular, there are classified as a low-cost production technique of carbon fibers for general industries, thin carbon fibers for extreme industries, and functional carbon fibers for smart composites.

[1]  R. Mathur,et al.  Improved performance of PEM fuel cell using carbon paper electrode prepared with CNT coated carbon fibers , 2009 .

[2]  V. Vaidyan,et al.  Studies on nickel coated carbon fibres and their composites , 1990 .

[3]  Arthur J. Epstein,et al.  Electromagnetic radiation shielding by intrinsically conducting polymers , 1994 .

[4]  Tensile Behavior of Poly (ethylene terephthalate)/Polyethylene Bicomponent Fibers Prepared by High-Speed Melt Spinning , 1997 .

[5]  Satoshi Kubo,et al.  Lignin-based carbon fibers for composite fiber applications , 2002 .

[6]  P. Watts,et al.  Are Bulk Defective Carbon Nanotubes Less Electrically Conducting , 2003 .

[7]  J. Kadla,et al.  Effect of Organoclay Reinforcement on Lignin-Based Carbon Fibers , 2011 .

[8]  E. Zussman,et al.  Failure modes of electrospun nanofibers , 2003 .

[9]  Qing Zhang,et al.  Kinetics Studies of Ultralong Single-Walled Carbon Nanotubes , 2009 .

[10]  B. Gupta,et al.  A Theory of Self-Crimping Bicomponent Filaments , 1975 .

[11]  Lianxi Zheng,et al.  Structure‐Dependent Electrical Properties of Carbon Nanotube Fibers , 2007 .

[12]  Soojin Park,et al.  Effect of growth of carbon nanofibers on the electrical conductivity of carbon fibers , 2011 .

[13]  A. Scipioni,et al.  Encapsulating carbon nanotubes in aqueous ds-DNA anisotropic phases: shear orientation and rheological properties , 2013 .

[14]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[15]  Soojin Park,et al.  Effect of carbonization temperature on electrical conductivity of carbon papers prepared from petroleum pitch-coated glass fibers , 2013 .

[16]  A. Ogale,et al.  Carbon fibers from dry-spinning of acetylated softwood kraft lignin , 2014 .

[17]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[18]  Shoushan Fan,et al.  Nanotechnology: Spinning continuous carbon nanotube yarns , 2002, Nature.

[19]  D. Zhao,et al.  Directed growth of multiwalled carbon nanotubes from ordered porous silica structures , 2001 .

[20]  Shishan Wu,et al.  Highly dispersed carbon nanotube/polypyrrole core/shell composites with improved electrochemical capacitive performance , 2013 .

[21]  M. Kozlov,et al.  Spinning Solid and Hollow Polymer‐Free Carbon Nanotube Fibers , 2005 .

[22]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[23]  Baozhong Tian,et al.  Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. , 2010, Nano letters.

[24]  K. Rhee,et al.  Rheological behaviors and mechanical properties of graphite nanoplate/carbon nanotube-filled epoxy nanocomposites , 2010 .

[25]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[26]  David G. Evans,et al.  Enhanced metal dispersion and hydrodechlorination properties of a Ni/Al2O3 catalyst derived from layered double hydroxides , 2009 .

[27]  J. Hayashi,et al.  Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition , 2006 .

[28]  José Pedro Santos,et al.  Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers. , 2014, Talanta.

[29]  J. F. Stoddart,et al.  Noncovalent Side-Wall Functionalization of Single-Walled Carbon Nanotubes , 2003 .

[30]  S. Tzeng,et al.  Growth of carbon nanofibers on activated carbon fiber fabrics , 2006 .

[31]  N. K. Jain,et al.  A review of ligand tethered surface engineered carbon nanotubes. , 2014, Biomaterials.

[32]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[33]  G. Wilkes,et al.  Effect of compatibilizer molecular weight and maleic anhydride content on interfacial adhesion of polypropylene–PA6 bicomponent fibers , 2001 .

[34]  I. Choi,et al.  Water-repellent coating: formation of polymeric self-assembled monolayers on nanostructured surfaces , 2007, Nanotechnology.

[35]  M L Simpson,et al.  Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth , 2008, Nanotechnology.

[36]  Jayashree Bijwe,et al.  Friction and wear behavior of polyetherimide composites in various wear modes , 2001 .

[37]  Qinghua Zhang,et al.  Large-scale fabrication of polyimide fibers containing functionalized multiwalled carbon nanotubes via wet spinning , 2014 .

[38]  M. Ohshima,et al.  Supercritical carbon dioxide-assisted electroless nickel plating on polypropylene—The effect of copolymer blend morphology on metal–polymer adhesion , 2014 .

[39]  Soo-Jin Park,et al.  Isothermal exfoliation of graphene oxide by a new carbon dioxide pressure swing method , 2014 .

[40]  Andreas Greiner,et al.  Nanostructured Fibers via Electrospinning , 2001 .

[41]  P. Poulin,et al.  Improved structure and properties of single-wall carbon nanotube spun fibers , 2002 .

[42]  B. Marcher Tailor-made polypropylene and bicomponent fibers for the nonwovens industry , 1991 .

[43]  M. Endo,et al.  Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites , 2006 .

[44]  Byung-Joo Kim,et al.  A simple method for the preparation of activated carbon fibers coated with graphite nanofibers. , 2007, Journal of colloid and interface science.

[45]  G. M. Croke,et al.  Iron oxide nanoparticle impregnated mesoporous silicas as platforms for the growth of carbon nanotubes , 2007 .

[46]  Byung-Joo Kim,et al.  Effects of nickel coating thickness on electric properties of nickel/carbon hybrid fibers , 2011 .

[47]  M. Maugey,et al.  Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. , 2005, Nano letters.

[48]  Soojin Park,et al.  Effect of growth of graphite nanofibers on superhydrophobic and electrochemical properties of carbon fibers , 2012 .

[49]  Lianxi Zheng,et al.  Towards chirality-pure carbon nanotubes. , 2010, Nanoscale.

[50]  Bhanu Pratap Singh,et al.  Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties , 2008 .

[51]  Zulfiqar Ahmad Khan,et al.  Tribological characteristics of innovative Al6061–carbon fiber rod metal matrix composites , 2013 .

[52]  J. Kong,et al.  Spinning and Processing Continuous Yarns from 4‐Inch Wafer Scale Super‐Aligned Carbon Nanotube Arrays , 2006 .

[53]  Mool C. Gupta,et al.  A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. , 2005, Journal of nanoscience and nanotechnology.

[54]  W. Yuan,et al.  Synthesis of carbon nanofiber/graphite-felt composite as a catalyst , 2006 .

[55]  T. Rials,et al.  Recent advances in low‐cost carbon fiber manufacture from lignin , 2013 .

[56]  Q. Zheng,et al.  Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[57]  J. Bochinski,et al.  Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials , 2011 .

[58]  Sofiane Guessasma,et al.  Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes , 2014 .

[59]  M. Maugey,et al.  Kinetics of fiber solidification , 2010, Proceedings of the National Academy of Sciences.

[60]  T. Clapp,et al.  Ultrastrong, Stiff, and Lightweight Carbon‐Nanotube Fibers , 2007 .

[61]  T. A. Taton,et al.  Homogeneous, Coaxial Liquid Crystal Domain Growth from Carbon Nanotube Seeds , 2003 .

[62]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[63]  R. L. Shambaugh,et al.  On-line Determination of Diameter and Temperature during Melt Blowing of Polypropylene , 1998 .

[64]  K. Lafdi,et al.  C/C composite, carbon nanotube and paraffin wax hybrid systems for the thermal control of pulsed power in electronics , 2010 .

[65]  O. Rios,et al.  Synthesis and characterization of lignin-based carbon materials with tunable microstructure , 2014 .

[66]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[67]  Lianxi Zheng,et al.  Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. , 2007, Small.

[68]  Cheng‐Chien Wang,et al.  Fabrication and Structural Characterization of Polyacrylonitrile and Carbon Nanofibers Containing Plasma-Modified Carbon Nanotubes by Electrospinning , 2010 .

[69]  Wenyan Duan,et al.  Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites , 2014 .

[70]  C. Hsieh,et al.  Water/oil repellency and drop sliding behavior on carbon nanotubes/carbon paper composite surfaces , 2010 .

[71]  Xiaoguang Yang,et al.  Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system , 2010 .

[72]  Byung-Joo Kim,et al.  Roles of Nickel Layer Deposition on Surface and Electric Properties of Carbon Fibers , 2011 .

[73]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[74]  Jie Liu,et al.  Raman spectroscopy and imaging of ultralong carbon nanotubes. , 2005, The journal of physical chemistry. B.

[75]  Yu Zhou,et al.  Microstructures of short-carbon-fiber-reinforced SiC composites prepared by hot-pressing , 2008 .

[76]  Haifeng Zhao,et al.  The effect of carbon microfiber substrate pretreatment on the growth of carbon nanomaterials , 2008 .

[77]  J. Ferraris,et al.  Multifunctional Carbon Nanotube Composite Fibers , 2004 .

[78]  A. Błędzki,et al.  Biocomposites reinforced with natural fibers: 2000–2010 , 2012 .

[79]  Kap Seung Yang,et al.  Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile , 2012 .

[80]  Seongyop Lim,et al.  Surface control of activated carbon fiber by growth of carbon nanofiber. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[81]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[82]  M. Shaffer,et al.  Analogies between polymer solutions and carbon nanotube dispersions , 1999 .

[83]  D. Sebastián,et al.  The effect of the functionalization of carbon nanofibers on their electronic conductivity , 2010 .

[84]  Yang Wang,et al.  Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. , 2008, Nano letters.

[85]  Soojin Park,et al.  Interfacial Characteristics and Fracture Toughness of Electrolytically Ni-Plated Carbon Fiber-Reinforced Phenolic Resin Matrix Composites. , 2001, Journal of colloid and interface science.

[86]  Jingqiu Liang,et al.  High-field electron emission of carbon nanotubes grown on carbon fibers , 2008 .

[87]  Qingwen Li,et al.  A comparison of the mechanical properties of fibers spun from different carbon nanotubes , 2011 .

[88]  Y. Uraki,et al.  Improvement of Mechanical Properties of Softwood Lignin-Based Carbon Fibers , 2014 .

[89]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[90]  B. Stansfield,et al.  Growth of carbon nanotubes on carbon paper by Ohmically heating silane-dispersed catalytic sites , 2002 .

[91]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[92]  Fengting Li,et al.  Direct synthesis of novel vanadium oxide embedded porous carbon nanofiber decorated with iron nanoparticles as a low-cost and highly efficient visible-light-driven photocatalyst. , 2014, Journal of colloid and interface science.

[93]  A. Ismail,et al.  Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review , 2012 .

[94]  Soojin Park,et al.  Influence of carbon nanofibers on electrochemical properties of carbon nanofibers/glass fibers composites , 2013 .

[95]  J. Pinilla,et al.  The graphitization of carbon nanofibers produced by the catalytic decomposition of natural gas , 2009 .

[96]  Byung-Joo Kim,et al.  Preparation and Characterization of Highly Conductive Nickel-coated Glass Fibers , 2008 .

[97]  S. Takenaka,et al.  Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber , 2003 .

[98]  Chen Feng,et al.  Flexible, Stretchable, Transparent Conducting Films Made from Superaligned Carbon Nanotubes , 2010 .

[99]  S. T. Amancio-Filho,et al.  Friction Spot Joining of aluminum AA2024/carbon-fiber reinforced poly(phenylene sulfide) composite single lap joints: Microstructure and mechanical performance , 2014 .

[100]  Hongwei He,et al.  Control growth of carbon nanofibers on Ni/activated carbon in a fluidized bed reactor , 2010 .

[101]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[102]  Y. H. Zhao,et al.  Sustained Growth of Ultralong Carbon Nanotube Arrays for Fiber Spinning , 2006 .

[103]  P. Rajalingam,et al.  POLYACRYLONITRILE PRECURSOR FOR CARBON FIBERS , 1991 .

[104]  K. Hua,et al.  Electrooxidation of methanol on carbon nanotubes supported Pt-Fe alloy electrode , 2006 .

[105]  Soo-Jin Park,et al.  Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. , 2013, Journal of colloid and interface science.

[106]  Byung-Joo Kim,et al.  Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior , 2005 .

[107]  Z. Zhang,et al.  Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion , 2011 .

[108]  F. Zheng,et al.  Carbon Nanotube Synthesis Using Mesoporous Silica Templates , 2002 .

[109]  Soojin Park,et al.  Effect of Ni catalyst dispersion on the growth of carbon nanofibers onto carbon fibers , 2011 .

[110]  Rafael Moliner,et al.  Carbon nanofibers as electrocatalyst support for fuel cells: Effect of hydrogen on their properties in CH4 decomposition , 2009 .

[111]  Bon-Cheol Ku,et al.  Effect of Process Condition on Tensile Properties of Carbon Fiber , 2011 .

[112]  G. Wallace,et al.  Carbon‐Nanotube Biofibers , 2007 .

[113]  Young-Seak Lee,et al.  Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers , 2008 .

[114]  C. Grigoropoulos,et al.  Synergistic integration of Ni and vertically aligned carbon nanotubes for enhanced transport properties on flexible substrates , 2014 .

[115]  Xiangyu Lv,et al.  Electrochemical chlorine sensor with multi-walled carbon nanotubes as electrocatalysts , 2007 .

[116]  R. Mokaya,et al.  Aligned Bundles of Carbon Nanotubes Are Easily Grown on As-Synthesized Mesoporous Silicate Substrates , 2008 .

[117]  Gengzhi Sun,et al.  Tuning array morphology for high-strength carbon-nanotube fibers. , 2010, Small.

[118]  Soo-Jin Park,et al.  A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers , 2008 .

[119]  K. Lai,et al.  Preparation of short submicron-fiber yarn by an annular collector through electrospinning , 2008 .

[120]  V. Rangari,et al.  Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers , 2008, Nanotechnology.

[121]  P. Poulin,et al.  X-ray microdiffraction study of single-walled carbon nanotube alignment across a fibre , 2007 .

[122]  Byung-Joo Kim,et al.  Preparation of nanoporous carbons from graphite nanofibres , 2006 .

[123]  Jaewoong Lee,et al.  Antibacterial activity of polyacrylonitrile-chitosan electrospun nanofibers. , 2014, Carbohydrate polymers.

[124]  J. Shim,et al.  Effect of acidic treatment on metal adsorptions of pitch-based activated carbon fibers. , 2004, Journal of colloid and interface science.

[125]  W. Park,et al.  Preparation of Polymer Nanofibers Containing Silver Nanoparticles by Using Poly(N-vinylpyrrolidone) , 2005 .

[126]  Satish Kumar,et al.  Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile , 2006 .

[127]  Soojin Park,et al.  Effect of fluorination of carbon nanotubes on superhydrophobic properties of fluoro-based films. , 2010, Journal of colloid and interface science.

[128]  Ling He,et al.  Synthesis and properties of silane-fluoroacrylate grafted starch. , 2013, Carbohydrate polymers.

[129]  Andrew G. Rinzler,et al.  Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy , 2000 .

[130]  George G. Chase,et al.  Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector , 2004 .

[131]  Darrell H. Reneker,et al.  Electrospinning process and applications of electrospun fibers , 1995 .

[132]  Michael Wehmann,et al.  Melt blowing technology , 1999 .

[133]  K. Rhee,et al.  Enhancement of superhydrophobicity and conductivity of carbon nanofibers-coated glass fabrics , 2014 .

[134]  R. Farris,et al.  Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns , 2009 .

[135]  Feng Yu,et al.  Electrochemical capacitive properties of CNT fibers spun from vertically aligned CNT arrays , 2012, Journal of Solid State Electrochemistry.

[136]  V. Kundŕat,et al.  Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers , 2013 .

[137]  D. Grewell,et al.  Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers , 2014 .

[138]  Z. Zhang,et al.  Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments , 2014 .

[139]  J. Pinilla,et al.  Parametric study of the decomposition of methane using a NiCu/Al2O3 catalyst in a fluidized bed reactor , 2010 .

[140]  R. Lawrence,et al.  Conductive Carbon Nanofiber–Polymer Foam Structures , 2005 .

[141]  R. Zahari,et al.  Synthesis of vertically aligned carbon nanotubes on carbon fiber , 2013 .

[142]  Y. Qiu,et al.  Effect of oxygen plasma-treated carbon fibers on the tribological behavior of oil-absorbed carbon/epoxy woven composites , 2012 .

[143]  C. Hsieh,et al.  Fabrication and superhydrophobicity of fluorinated carbon fabrics with micro/nanoscaled two-tier roughness , 2008 .

[144]  Alejandro J. Rodriguez,et al.  Mechanical properties of carbon nanofiber/fiber-reinforced hierarchical polymer composites manufactured with multiscale-reinforcement fabrics , 2011 .

[145]  K. Liao,et al.  The effects of catalyst treatment on fast growth of millimeter-long multi-walled carbon nanotube arrays , 2011 .

[146]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[147]  Q. X. Jia,et al.  Ultralong single-wall carbon nanotubes , 2004, Nature materials.