Are Realized Volatility Models Good Candidates for Alternative Value at Risk Prediction Strategies?

In this paper, we assess the Value at Risk (VaR) prediction accuracy and efficiency of six ARCH-type models, six realized volatility models and two GARCH models augmented with realized volatility regressors. The α-th quantile of the innovation’s distribution is estimated with the fully parametric method using either the normal or the skewed student distributions and also with the Filtered Historical Simulation (FHS), or the Extreme Value Theory (EVT) methods. Our analysis is based on two S&P 500 cash index out-of-sample forecasting periods, one of which covers exclusively the recent 2007-2009 financial crisis. Using an extensive array of statistical and regulatory risk management loss functions, we find that the realized volatility and the augmented GARCH models with the FHS or the EVT quantile estimation methods produce superior VaR forecasts and allow for more efficient regulatory capital allocations. The skewed student distribution is also an attractive alternative, especially during periods of high market volatility.

[1]  Marc S. Paolella,et al.  Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .

[2]  Guojun Wu,et al.  The Determinants of Asymmetric Volatility , 2001 .

[3]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[4]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[5]  P. Giot Implied Volatility Indexes and Daily Value at Risk Models , 2005 .

[6]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[7]  R. Engle New Frontiers for Arch Models , 2002 .

[8]  Alan G. White,et al.  INCORPORATING VOLATILITY UPDATING INTO THE HISTORICAL SIMULATION METHOD FOR VALUE AT RISK , 1998 .

[9]  Philippe Lambert,et al.  Modelling financial time series using GARCH-type models with a skewed student distribution for the innovations , 2001 .

[10]  K. F. Chan,et al.  Using extreme value theory to measure value-at-risk for daily electricity spot prices , 2006 .

[11]  Stavros Degiannakis,et al.  Volatility forecasting: intra-day versus inter-day models , 2008 .

[12]  Marwan Izzeldin,et al.  Forecasting Daily Stock Volatility: the Role of Intraday Information and Market Conditions , 2008 .

[13]  Miguel A. Ferreira,et al.  Evaluating Interest Rate Covariance Models within a Value-at-Risk Framework , 2004 .

[14]  S. Laurent,et al.  Modelling Daily Value-at-Risk Using Realized Volatility and Arch Type Models , 2001 .

[15]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[16]  Dick van Dijk,et al.  Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements , 2009 .

[17]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[18]  Guojun Wu,et al.  Asymmetric Volatility and Risk in Equity Markets , 1997 .

[19]  Pierre Giot,et al.  Market risk in commodity markets: a VaR approach , 2003 .

[20]  C. Liu,et al.  Forecasting realized volatility: a Bayesian model‐averaging approach , 2009 .

[21]  C. Perignon,et al.  The Level and Quality of Value-at-Risk Disclosure by Commercial Banks , 2009 .

[22]  A. Gallant,et al.  Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance , 1999, Review of Economics and Statistics.

[23]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[24]  SUPERVISORY FRAMEWORK FOR THE USE OF "BACKTESTING" IN CONJUNCTION WITH THE INTERNAL MODELS APPROACH TO MARKET RISK CAPITAL REQUIREMENTS , 1996 .

[25]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[26]  Jeremy Berkowitz Testing Density Forecasts, With Applications to Risk Management , 2001 .

[27]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[28]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[29]  Yu-Min Lian,et al.  Forecasting Value-at-Risk using high frequency data: The realized range model , 2009 .

[30]  J. Zakoian Threshold heteroskedastic models , 1994 .

[31]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[32]  John Y. Campbell,et al.  No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns , 1991 .

[33]  Siem Jan Koopman,et al.  Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realised and Implied Volatility Measurements , 2005 .

[34]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[35]  D. McMillan,et al.  How useful is intraday data for evaluating daily Value-at-Risk?: Evidence from three Euro rates , 2008 .

[36]  G. Barone-Adesi VaR Without Correlations for Nonlinear Portfolios , 1998 .

[37]  Pierre Giot,et al.  Modelling daily value-at-risk using realized volatility and arch type models , 2001 .

[38]  Neil Shephard,et al.  Realising the future: forecasting with high frequency based volatility (HEAVY) models , 2010 .

[39]  S. Laurent,et al.  Value-at-Risk for long and short trading positions , 2003 .

[40]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[41]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[42]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[43]  Michael P. Clements,et al.  Quantile forecasts of daily exchange rate returns from forecasts of realized volatility , 2008 .

[44]  M. Martens Measuring and Forecasting S&P 500 Index-Futures Volatility Using High-Frequency Data , 2002 .

[45]  Robinson Kruse,et al.  Can Realized Volatility improve the Accuracy of Value-at-Risk Forecasts? , 2006 .

[46]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[47]  Andrea Beltratti,et al.  Statistical Benefits of Value-At-Risk with Long Memory , 2005 .

[48]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[49]  S. Mittnik,et al.  The Volatility of Realized Volatility , 2005 .

[50]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[51]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[52]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[53]  Jose A. Lopez,et al.  Methods for Evaluating Value-at-Risk Estimates , 1998 .

[54]  Susan Thomas,et al.  Selection of Value-at-Risk models , 2003 .

[55]  A. Grané,et al.  The effect of realised volatility on stock returns risk estimates , 2007 .

[56]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[57]  Stephen L Taylor,et al.  Forecasting Currency Volatility: A Comparison of Implied Volatilities and AR(FI)MA Models , 2003 .

[58]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[59]  Juri Marcucci Forecasting Stock Market Volatility with Regime-Switching GARCH Models , 2005 .

[60]  Tim Bollerslev,et al.  Glossary to ARCH (GARCH) , 2008 .

[61]  E. Ghysels,et al.  Why Do Absolute Returns Predict Volatility So Well , 2006 .

[62]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[63]  David G. McMillan,et al.  Are RiskMetrics forecasts good enough? Evidence from 31 stock markets , 2009 .

[64]  P. Hansen A Test for Superior Predictive Ability , 2005 .

[65]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[66]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[67]  C. Granger,et al.  Forecasting Economic Time Series. , 1988 .

[68]  Jerry Coakley,et al.  Markov-Switching GARCH Modelling of Value-at-Risk , 2008 .

[69]  D. Hendricks,et al.  Evaluation of Value-at-Risk Models Using Historical Data , 1996 .

[70]  Dimitrios P. Louzis,et al.  Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility , 2012 .

[71]  Peter Christoffersen,et al.  Value–at–Risk Models , 2009 .

[72]  J. R. Ward,et al.  Fractals and Intrinsic Time - a Challenge to Econometricians , 1999 .

[73]  R. Pindyck Risk, Inflation, and the Stock Market , 1983 .

[74]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[75]  R. Gencay,et al.  National Centre of Competence in Research Financial Valuation and Risk Management Working Paper No . 42 Extreme value theory and Value-at-Risk : Relative performance in emerging markets , 2003 .

[76]  Hans Byström,et al.  Managing extreme risks in tranquil and volatile markets using conditional extreme value theory , 2004 .

[77]  K. French,et al.  Expected stock returns and volatility , 1987 .

[78]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[79]  M. Dacorogna,et al.  Volatilities of different time resolutions — Analyzing the dynamics of market components , 1997 .

[80]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[81]  Giampiero M. Gallo,et al.  Comparison of Volatility Measures: A Risk Management Perspective , 2009 .

[82]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .

[83]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[84]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[85]  Fulvio Corsi,et al.  HAR volatility modelling with heterogeneous leverage and jumps , 2009 .

[86]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .