Searching for Robust Minimal-Order Compensators

A method of designing a family of robust compensators for a single-input/single-o linear system is presented. Each compensator’s transfer function is found by us genetic-algorithm search for numerator and denominator coefficients. The search mizes the probabilities of unsatisfactory stability and performance subject to real pa eter variations of the plant. As the search progresses, probabilities are estimate Monte Carlo evaluation. The design procedure employs a sweep from the lowest fe transfer-function order to higher order, terminating either when design goals have b achieved or when no further improvement in robustness is evident. The method pro a means for estimating the best possible compensation of a given order based on re searches. @DOI: 10.1115/1.1367270 #

[1]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[2]  Jin Bae Park,et al.  Robust fuzzy control of nonlinear systems with parametric uncertainties , 2001, IEEE Trans. Fuzzy Syst..

[3]  Xiaoyun Zhu,et al.  Genetic algorithms and simulated annealing for robustness analysis , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[4]  Robert F. Stengel,et al.  Robust control of nonlinear systems with parametric uncertainty , 2002, Autom..

[5]  Robert F. Stengel,et al.  A monte carlo approach to the analysis of control system robustness , 1993, Autom..

[6]  Pramod P. Khargonekar,et al.  Design of computer experiments for open-loop control and robustness analysis of clutch-to-clutch shifts in automatic transmissions , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[7]  Robert F. Stengel,et al.  Parallel stochastic robustness synthesis for control system design , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[8]  János D. Pintér,et al.  Statistical Inference for the Bounds of Random Variables , 1991 .

[9]  Kemin Zhou,et al.  A probabilistic approach to robust control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[10]  Robert F. Stengel,et al.  Robust control system design using random search and genetic algorithms , 1997, IEEE Trans. Autom. Control..

[11]  Thomas K. Caughey,et al.  The Benchmark Problem , 1998 .

[12]  Kemin Zhou,et al.  Constrained optimal synthesis and robustness analysis by randomized algorithms , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[13]  R. Y. Chiang,et al.  H∞ robust control synthesis for an undamped, non-colocated spring-mass system , 1990, 1990 American Control Conference.

[14]  M. Morari,et al.  Computational complexity of μ calculation , 1993 .

[15]  R. Tempo,et al.  Probabilistic robustness analysis: explicit bounds for the minimum number of samples , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  Mathukumalli Vidyasagar,et al.  Statistical learning theory and randomized algorithms for control , 1998 .

[17]  E. G. Collins,et al.  Robust Control Design for a Benchmark Problem Using a Structured Covariance Approach , 1990, 1990 American Control Conference.

[18]  R. Stengel,et al.  Stochastic robustness synthesis applied to a benchmark control problem , 1995 .

[19]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Dennis S. Bernstein,et al.  A Benchmark Problem for Robust Control Design , 1990, 1990 American Control Conference.

[21]  M. Morari,et al.  Computational complexity of μ calculation , 1994, IEEE Trans. Autom. Control..

[22]  B. Golden,et al.  Interval estimation of a global optimum for large combinatorial problems , 1979 .

[23]  Robert F. Stengel,et al.  Parallel synthesis of robust control systems , 1998, IEEE Trans. Control. Syst. Technol..

[24]  Christopher I. Marrison,et al.  Design of Robust Control Systems for a Hypersonic Aircraft , 1998 .

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  Bong Wie,et al.  Robust H ∞ Control Synthesis Method and Its Application to a Benchmark Problem , 1991 .

[27]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[28]  Robert F. Stengel,et al.  Robust Nonlinear Control of a Hypersonic Aircraft , 1999 .

[29]  R. Tempo,et al.  Probabilistic robustness analysis: explicit bounds for the minimum number of samples , 1997 .

[30]  Bruce L. Golden,et al.  Point estimation of a global optimum for large combinatorial problems , 1978 .

[31]  Richard D. Braatz,et al.  Computational Complexity of , 2007 .