A combined age-and-stock-based policy for ordering blood units in hospital blood banks

This paper analyses the performance of an ordering policy for hospital blood banks (HBBs) that takes into account the information regarding the on-hand stock along with the remaining life of blood products. The blood items are assumed to start aging as soon as they have been collected. We develop a simulation model to show that the combined age-and-stock-based policy would outperform some of the popular periodic reviews and continuous review policies in controlling total costs by about 5% on an average basis. Our results show that the suggested policy will reduce the total operational cost of managing platelets, which have a very short shelf life, by about 27% at a real-life HBB. The policy will also lead to about 7% reduction in the total cost of the negative blood groups, which are characterized by extremely erratic demand patterns. The implementation of the ordering policy will help HBBs to reduce their operational costs while ensuring a minimum desirable level of the availability of critical blood products.

[1]  Stefan Minner,et al.  Periodic review inventory-control for perishable products under service-level constraints , 2010, OR Spectr..

[2]  Karen Spens,et al.  Using simulation to increase efficiency in blood supply chains , 2006 .

[3]  Steven Nahmias,et al.  Perishable Inventory Theory: A Review , 1982, Oper. Res..

[4]  Steven Nahmias,et al.  Optimal Ordering Policies for Perishable Inventory - II , 1975, Oper. Res..

[5]  René Haijema,et al.  Blood platelet production: a novel approach for practical optimization , 2009, Transfusion.

[6]  Kok de Ag,et al.  Two replenishment strategies for the lost sales inventory model : a comparison , 1994 .

[7]  N. Ravichandran,et al.  Blood bank inventory management in India , 2014 .

[8]  S. Nahmias On Ordering Perishable Inventory when Both Demand and Lifetime are Random , 1977 .

[9]  D. Warner North,et al.  A methodology for analyzing emission control strategies , 1976, Comput. Oper. Res..

[10]  S. K. Goyal,et al.  Recent trends in modeling of deteriorating inventory , 2001, Eur. J. Oper. Res..

[11]  B. Eddy Patuwo,et al.  Analysis of the effect of various unit costs on the optimal incoming quantity in a perishable inventory model , 2004, Eur. J. Oper. Res..

[12]  R C Elston,et al.  Blood bank inventories. , 1970, CRC critical reviews in clinical laboratory sciences.

[13]  Liming Liu,et al.  (s, S) Continuous Review Models for Products with Fixed Lifetimes , 1999, Oper. Res..

[14]  Prem Vrat,et al.  Simulation of a blood-inventory-bank system in a hospital , 1976 .

[15]  S. Kalpakam,et al.  A lost sales (S - 1,S) perishable inventory system with renewal demand , 1996 .

[16]  S. Kalpakam,et al.  A continuous review perishable inventory model , 1988 .

[17]  B. Eddy Patuwo,et al.  A perishable inventory model with positive order lead times , 1999, Eur. J. Oper. Res..

[18]  Thomas E. Morton,et al.  Near Myopic Heuristics for the Fixed-Life Perishability Problem , 1993 .

[19]  S. Kalpakam,et al.  A perishable inventory system with modified (S-1, S) policy and arbitrary processing times , 2001, Comput. Oper. Res..

[20]  Itir Z. Karaesmen,et al.  Managing Perishable and Aging Inventories: Review and Future Research Directions , 2011 .

[21]  Bryan L. Deuermeyer A Multi-Type Production System for Perishable Inventories , 1979, Oper. Res..

[22]  Sridhar Seshadri,et al.  New Policies for the Stochastic Inventory Control Problem with Two Supply Sources , 2010, Oper. Res..

[23]  N. Ravichandran,et al.  Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand , 1995 .

[24]  Brant E. Fries,et al.  Optimal Ordering Policy for a Perishable Commodity with Fixed Lifetime , 1975, Oper. Res..

[25]  Shmuel Gal,et al.  A Markovian Model for a Perishable Product Inventory , 1977 .

[26]  Gregory P. Prastacos,et al.  Critical number ordering policy for LIFO perishable inventory systems , 1981, Comput. Oper. Res..

[27]  J. Wal,et al.  Blood platelet production with breaks : optimization by SDP and simulation , 2009 .

[28]  Fred Raafat,et al.  Survey of Literature on Continuously Deteriorating Inventory Models , 1991 .

[29]  Steven Nahmias,et al.  A Heuristic Lot Size Reorder Point Model for Decaying Inventories , 1979 .

[30]  G. Prastacos Blood Inventory Management: An Overview of Theory and Practice , 1984 .

[31]  Huan Neng Chiu,et al.  A heuristic (R, T) periodic review perishable inventory model with lead times , 1995 .

[32]  Karel H. van Donselaar,et al.  A heuristic to manage perishable inventory with batch ordering, positive lead-times, and time-varying demand , 2009, Comput. Oper. Res..

[33]  Steven Nahmias,et al.  Optimal ordering policies for a product that perishes in two periods subject to stochastic demand , 1973 .

[34]  S. Nahmias Myopic Approximations for the Perishable Inventory Problem , 1976 .

[35]  S. Kalpakam,et al.  Continuous review (s, S) inventory system with random lifetimes and positive leadtimes , 1994, Oper. Res. Lett..

[36]  T. Liao,et al.  A new age-based replenishment policy for supply chain inventory optimization of highly perishable products , 2013 .

[37]  Howard J. Weiss,et al.  Optimal Ordering Policies for Continuous Review Perishable Inventory Models , 1980, Oper. Res..

[38]  Michael Carter,et al.  Tutorial on constructing a red blood cell inventory management system with two demand rates , 2008, Eur. J. Oper. Res..

[39]  Ruud H. Teunter,et al.  Review of inventory systems with deterioration since 2001 , 2012, Eur. J. Oper. Res..

[40]  Jan van der Wal,et al.  Blood platelet production: Optimization by dynamic programming and simulation , 2007, Comput. Oper. Res..

[41]  Emre Berk,et al.  Analysis of the (Q, r) Inventory Model for Perishables with Positive Lead Times and Lost Sales , 2008, Oper. Res..

[42]  Eylem Tekin,et al.  Age-based vs. stock level control policies for a perishable inventory system , 2001, Eur. J. Oper. Res..

[43]  M Rabinowitz Blood bank inventory policies: a computer simulation. , 1973, Health services research.

[44]  Steven Nahmias,et al.  S-1, S Policies for Perishable Inventory , 1985 .

[45]  L. C. Leung,et al.  Inventory Management of Platelets in Hospitals: Optimal Inventory Policy for Perishable Products with Regular and Optional Expedited Replenishments , 2011 .

[46]  N. Ravichandran,et al.  Inventory Management in Blood Banks , 2015 .

[47]  Morris A. Cohen,et al.  Simulation of blood bank systems , 1979, SIML.

[48]  Jeroen Beliën,et al.  Supply chain management of blood products: A literature review , 2012, Eur. J. Oper. Res..

[49]  van Zyl,et al.  Inventory control for perishable commodities , 1963 .

[50]  Simon J. E. Taylor,et al.  Facilitating the Analysis of a UK National Blood Service Supply Chain Using Distributed Simulation , 2009, Simul..

[51]  Simon J. E. Taylor,et al.  Comparing conventional and distributed approaches to simulation in a complex supply-chain health system , 2009, J. Oper. Res. Soc..

[52]  Navonil Mustafee,et al.  Applications of simulation within the healthcare context , 2010, J. Oper. Res. Soc..

[53]  Jeroen Belien,et al.  Supply chain management of blood products: A literature review , 2012 .

[54]  Harshal Lowalekar,et al.  A model for blood components processing , 2011, Transfusion.

[55]  Harshal Lowalekar,et al.  Model for blood collections management , 2010, Transfusion.

[56]  Morris A. Cohen Analysis of Single Critical Number Ordering Policies for Perishable Inventories , 1976, Oper. Res..

[57]  Sally C. Brailsford,et al.  Using simulation to improve the blood supply chain , 2007, J. Oper. Res. Soc..