The construction and evaluation of statistical models of melodic structure in music perception and composition

The prevalent approach to developing cognitive models of music perception and composition is to construct systems of symbolic rules and constraints on the basis of extensive music-theoretic and music-analytic knowledge. The thesis proposed in this dissertation is that statistical models which acquire knowledge through the induction of regularities in corpora of existing music can, if examined with appropriate methodologies, provide significant insights into the cognitive processing involved in music perception and composition. This claim is examined in three stages. First, a number of statistical modelling techniques drawn from the fields of data compression, statistical language modelling and machine learning are subjected to empirical evaluation in the context of sequential prediction of pitch structure in unseen melodies. This investigation results in a collection of modelling strategies which together yield significant performance improvements over existing methods. In the second stage, these statistical systems are used to examine observed patterns of expectation collected in previous psychological research on melody perception. In contrast to previous accounts of this data, the results demonstrate that these patterns of expectation can be accounted for in terms of the induction of statistical regularities acquired through exposure to music. In the final stage of the present research, the statistical systems developed in the first stage are used to examine the intrinsic computational demands of the task of composing a stylistically successful melody The results suggest that the systems lack the degree of expressive power needed to consistently meet the demands of the task. In contrast to previous research, however, the methodological framework developed for the evaluation of computational models of composition enables a detailed empirical examination and comparison of such models which facilitates the identification and resolution of their weaknesses.

[1]  Peter Essens,et al.  Perception of Temporal Patterns , 1985 .

[2]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[3]  Ian Cross Music and Science: Three Views , 1998 .

[4]  W. Thompson Sensitivity to combinations of musical parameters: Pitch with duration, and pitch pattern with durational pattern , 1994, Perception & psychophysics.

[5]  Karl R. Popper The Logic of Scientific Discovery. , 1977 .

[6]  P. Johnson-Laird Jazz Improvization: A Theory at the Computational Level , 1991 .

[7]  Charles Ames,et al.  Quantifying musical merit , 1992 .

[8]  Daniel Nolan,et al.  Quantitative Parsimony , 1997, The British Journal for the Philosophy of Science.

[9]  Sharon Bailin CREATIVITY IN CONTEXT , 2002 .

[10]  C. Krumhansl,et al.  Tonal hierarchies in the music of north India. , 1984, Journal of experimental psychology. General.

[11]  L. Cuddy,et al.  Expectancies generated by melodic intervals: Perceptual judgments of melodic continuity , 1995, Perception & psychophysics.

[12]  Paul T. von Hippel,et al.  Why Do Skips Precede Reversals? The Effect of Tessitura on Melodic Structure , 2000 .

[13]  John G. Cleary,et al.  Models of English text , 1997, Proceedings DCC '97. Data Compression Conference.

[14]  Michael C. Mozer,et al.  Neural Network Music Composition by Prediction: Exploring the Benefits of Psychoacoustic Constraints and Multi-scale Processing , 1994, Connect. Sci..

[15]  G. Balzano What Are Musical Pitch and Timbre , 1986 .

[16]  Alan Smaill,et al.  Representing music symbolically , 1991 .

[17]  Camilo Rueda,et al.  Computer-Assisted Composition at IRCAM: From PatchWork to OpenMusic , 1999, Computer Music Journal.

[18]  John G. Cleary,et al.  The entropy of English using PPM-based models , 1996, Proceedings of Data Compression Conference - DCC '96.

[19]  S. Chipman The Remembered Present: A Biological Theory of Consciousness , 1990, Journal of Cognitive Neuroscience.

[20]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[21]  N. Chater,et al.  Simplicity: a unifying principle in cognitive science? , 2003, Trends in Cognitive Sciences.

[22]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[23]  A. Unyk,et al.  The influence of expectancy on melodic perception , 1987 .

[24]  Nick Chater,et al.  Reconciling simplicity and likelihood principles in perceptual organization. , 1996, Psychological review.

[25]  Paul T. von Hippel,et al.  Redefining Pitch Proximity: Tessitura and Mobility as Constraints on Melodic Intervals , 2000 .

[26]  Annabel J. Cohen,et al.  Development of Tonality Induction: Plasticity, Exposure, and Training , 2000 .

[27]  Ran El-Yaniv,et al.  On Prediction Using Variable Order Markov Models , 2004, J. Artif. Intell. Res..

[28]  David J. Chalmers,et al.  On implementing a computation , 1994, Minds and Machines.

[29]  Mark A. Hall Selection of attributes for modeling Bach chorales by a genetic algorithm , 1995, Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems.

[30]  T. Priest,et al.  Using Creativity Assessment Experience to Nurture and Predict Compositional Creativity , 2001 .

[31]  Burton S. Rosner,et al.  10 – Melodic Processes and the Perception of Music , 1982 .

[32]  Mari Riess Jones,et al.  Music as a stimulus for psychological motion: Part II. An expectancy model. , 1982 .

[33]  Alan Smaill,et al.  Musical Knowledge: What can Artificial Intelligence Bring to the Musician? , 2000, Readings in Music and Artificial Intelligence.

[34]  J. H. Steiger Tests for comparing elements of a correlation matrix. , 1980 .

[35]  David W. Aha,et al.  A Comparative Evaluation of Sequential Feature Selection Algorithms , 1995, AISTATS.

[36]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[37]  Ke Chen,et al.  Methods of Combining Multiple Classifiers with Different Features and Their Applications to Text-Independent Speaker Identification , 1997, Int. J. Pattern Recognit. Artif. Intell..

[38]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[39]  J. Hutsler,et al.  FUNDAMENTAL ISSUES IN THE EVOLUTIONARY PSYCHOLOGY OF MUSIC: Assessing Innateness and Domain Specificity , 2005 .

[40]  Thomas G. Dietterich,et al.  Learning to Predict Sequences , 1985 .

[41]  Mario Baroni,et al.  Musical Grammar and the Study of Cognitive Processes of Composition , 1999 .

[42]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[43]  V. Marchman,et al.  Learning from a connectionist model of the acquisition of the English past tense , 1996, Cognition.

[44]  R. Shepard 11 – Structural Representations of Musical Pitch , 1982 .

[45]  M. Kendall,et al.  The Logic of Scientific Discovery. , 1959 .

[46]  E. Schellenberg,et al.  Expectancy in melody: tests of the implication-realization model , 1996, Cognition.

[47]  Mark Steedman,et al.  On Interpreting Bach , 1987 .

[48]  David Cope,et al.  Computers and Musical Style , 1993 .

[49]  Suzanne Bunton,et al.  Semantically Motivated Improvements for PPM Variants , 1997, Comput. J..

[50]  Tuomas Eerola,et al.  The dynamics of musical expectancy : cross-cultural and statistical approaches to melodic expectations , 2003 .

[51]  Luke Windsor,et al.  Computational Modeling of Music Cognition: Problem or Solution? , 1998 .

[52]  Leonard B. Meyer Explaining Music: Essays and Explorations , 1973 .

[53]  I. Kant,et al.  The Critique of Judgement , 2020 .

[54]  Frank A. Russo,et al.  A common origin for vocal accuracy and melodic expectancy: Vocal constraints , 1999 .

[55]  Ian H. Witten,et al.  Comparing human and computational models of music prediction , 1994 .

[56]  Christian Genest,et al.  Combining Probability Distributions: A Critique and an Annotated Bibliography , 1986 .

[57]  William Forde Thompson A Review and Empirical Assessment The Analysis and Cognition of Basic Melodic Structures . Eugene Narmour . The Analysis and Cognition of Melodic Complexity . Eugene Narmour . , 1996 .

[58]  David Temperley,et al.  What's Key for Key? The Krumhansl-Schmuckler Key-Finding Algorithm Reconsidered , 1999 .

[59]  David Cope On algorithmic representation of musical style , 1992 .

[60]  Peter Webster,et al.  Conceptual Bases for Creative Thinking in Music , 1987 .

[61]  P. G. Vos,et al.  Goodness ratings of melodic openings and closures , 2002, Perception & psychophysics.

[62]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[63]  E. Narmour Hierarchical Expectation and Musical Style , 1999 .

[64]  Alan Smaill,et al.  Representing music for analysis and composition , 1990 .

[65]  Petri Toiviainen,et al.  THE ROLE OF ACCENT PERIODICITIES IN METER INDUCTION: A CLASSIFICATION STUDY , 2004 .

[66]  Paul T. von Hippel,et al.  Questioning a Melodic Archetype: Do Listeners Use Gap-Fill to Classify Melodies? , 2000 .

[67]  J. Bharucha,et al.  Reaction time and musical expectancy: priming of chords. , 1986, Journal of experimental psychology. Human perception and performance.

[68]  John G. Cleary,et al.  MODELLING AND GENERATING MUSIC USING MULTIPLE VIEWPOINTS , 1988 .

[69]  Alistair Moffat,et al.  Implementing the PPM data compression scheme , 1990, IEEE Trans. Commun..

[70]  Charles Ames,et al.  Automated Composition in Retrospect: 1956–1986 , 2017 .

[71]  William Forde Thompson,et al.  Expectancy in Bohemian Folk Song Melodies: Evaluation of Implicative Principles for Implicative and Closural Intervals , 1998 .

[72]  J. M. Troost,et al.  Ascending and Descending Melodic Intervals: Statistical Findings and Their Perceptual Relevance , 1989 .

[73]  M. Schmuckler Expectation in music: Investigation of melodic and harmonic processes. , 1989 .

[74]  Josh H. McDermott,et al.  THE ORIGINS OF MUSIC: INNATENESS, UNIQUENESS, AND EVOLUTION , 2005 .

[75]  John G. Cleary,et al.  Unbounded Length Contexts for PPM , 1997 .

[76]  Herbert A. Simon,et al.  The Structure of Ill Structured Problems , 1973, Artif. Intell..

[77]  J. Bharucha Music Cognition and Perceptual Facilitation: A Connectionist Framework , 1987 .

[78]  Mei-Yuh Hwang,et al.  The SPHINX-II speech recognition system: an overview , 1993, Comput. Speech Lang..

[79]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[80]  Ian Cross,et al.  The Andean anacrusis? Rhythmic structure and perception in Easter songs of Northern Potosí, Bolivia , 2000 .

[81]  Refractor Vision , 2000, The Lancet.

[82]  David Lewin,et al.  Generalized Musical Intervals and Transformations , 1987 .

[83]  Rafael Morales-Bueno,et al.  Using Multiattribute Prediction Suffix Graphs to Predict and Generate Music , 2001 .

[84]  James C. Carlsen Some factors which influence melodic expectancy , 1981 .

[85]  Rafael Morales Bueno,et al.  Using Multiattribute Prediction Suffix Graphs to Predict and Generate Music , 2001, Computer Music Journal.

[86]  Schellenberg Eg Expectancy in melody: tests of the implication-realization model , 1996 .

[87]  Ian H. Witten,et al.  The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression , 1991, IEEE Trans. Inf. Theory.

[88]  I. Peretz,et al.  Contribution of different cortical areas in the temporal lobes to music processing. , 1998, Brain : a journal of neurology.

[89]  Steven Brown,et al.  The Origins of Music: Edited by Nils L. Wallin, Björn Merker, and Steven Brown, Cambridge, MA: The MIT Press, 2000, xii+ 498 pages, ISBN 0-262-23206-5, US$60.00 , 2000 .

[90]  Mira Balaban,et al.  Understanding music with AI: perspectives on music cognition , 1992 .

[91]  John R. Anderson,et al.  Learning and Memory: An Integrated Approach , 1994 .

[92]  Dominik Hörnel,et al.  Comparative Style Analysis with Neural Networks , 1999, ICMC.

[93]  Piet G. Vos,et al.  Tonality Induction: Theoretical Problems and Dilemmas , 2000 .

[94]  Shlomo Dubnov,et al.  Guessing the Composer's Mind: Applying Universal Prediction to Musical Style , 1999, ICMC.

[95]  Josef Kittler,et al.  Combining multiple classifiers by averaging or by multiplying? , 2000, Pattern Recognit..

[96]  Leonard B. Meyer,et al.  Music, the arts, and ideas : patterns and predictions in twentieth-century culture , 1968 .

[97]  I. Peretz,et al.  Processing of local and global musical information by unilateral brain-damaged patients. , 1990, Brain : a journal of neurology.

[98]  Brian Everitt,et al.  Principles of Multivariate Analysis , 2001 .

[99]  Costas S. Iliopoulos,et al.  Pattern Processing in Melodic Sequences: Challenges, Caveats and Prospects , 2001, Comput. Humanit..

[100]  Joseph Rothstein,et al.  MIDI: A Comprehensive Introduction , 1992 .

[101]  Lloyd A. Smith,et al.  A computer model of blues music and its evaluation , 1996 .

[102]  T. Eerola Data-driven influences on melodic expectancy : Continuations in North Sami yoiks rated by South African traditional healers , 2004 .

[103]  M A Schmuckler,et al.  Harmonic and rhythmic influences on musical expectancy , 1994, Perception & psychophysics.

[104]  Robert Rowe,et al.  Machine Listening and Composing with Cypher , 1992 .

[105]  Lyle Davidson,et al.  From collections to structure: the developmental path of tonal thinking , 2001 .

[106]  Richard E. Ladner,et al.  On-line stochastic processes in data compression , 1996 .

[107]  Cecil J. Sharp,et al.  English Folk Songs , 1959 .

[108]  R. Jackendoff Consciousness and the Computational Mind , 1987 .

[109]  J. Torrey The standard of taste. , 1874 .

[110]  Geraint A. Wiggins Music , syntax , and the meaning of “ meaning ” , 1998 .

[111]  Peter M. Todd,et al.  Pitch, Harmony, and Neural Nets: A Psychological Perspective , 2003 .

[112]  Mark L. James,et al.  On the Entropy of Music: An Experiment with Bach Chorale Melodies , 1992 .

[113]  D. Brinkman,et al.  Problem Finding, Creativity Style and the Musical Compositions of High School Students. , 1999 .

[114]  R. Mayer Handbook of Creativity: Fifty Years of Creativity Research , 1998 .

[115]  C. Roads,et al.  Grammars as Representations for Music , 1979 .

[116]  R. Jackendoff,et al.  A Generative Theory of Tonal Music , 1985 .

[117]  Oakley Me,et al.  Cognitive therapy for anxiety disorders. , 1990 .

[118]  W. Teahan,et al.  Experiments on the zero frequency problem , 1995, Proceedings DCC '95 Data Compression Conference.

[119]  Ian H. Witten,et al.  An empirical evaluation of coding methods for multi-symbol alphabets , 1993, [Proceedings] DCC `93: Data Compression Conference.

[120]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[121]  Z. Pylyshyn Computing in cognitive science , 1989 .

[122]  C. Krumhansl Music Psychology and Music Theory: Problems and Prospects , 1995 .

[123]  Christopher S. Lee The perception of metrical structure: Experimental evidence and a new model , 1987 .

[124]  C. Krumhansl,et al.  Cross-cultural music cognition: cognitive methodology applied to North Sami yoiks , 2000, Cognition.

[125]  Fred Lerdahl,et al.  Cognitive constraints on compositional systems , 1992 .

[126]  D. Povel,et al.  Harmonic Factors in the Perception of Tonal Melodies , 2002 .

[127]  Stephen Jay Gould,et al.  The Flamingo's Smile , 1986 .

[128]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[129]  E. Schellenberg,et al.  Good Pitch Memory Is Widespread , 2003, Psychological science.

[130]  Maja Serman,et al.  Investigating Melodic Segmentation through the Temporal Multi-Scaling Framework , 2003 .

[131]  A. Friederici,et al.  Brain Indices of Music Processing: Nonmusicians are Musical , 2000, Journal of Cognitive Neuroscience.

[132]  C. Krumhansl,et al.  Measuring and Modeling Real-Time Responses to Music: The Dynamics of Tonality Induction , 2003, Perception.

[133]  Moray Allan,et al.  Harmonising Chorales in the Style of Johann , .

[134]  Emilios Cambouropoulos,et al.  Towards a General Computational Theory of Musical Structure , 1998 .

[135]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[136]  Esko Ukkonen,et al.  On-line construction of suffix trees , 1995, Algorithmica.

[137]  J. Bharucha Tonality and expectation. , 1994 .

[138]  P W Jackson,et al.  The person, the product, and the response: conceptual problems in the assessment of creativity. , 1965, Journal of personality.

[139]  E. Schellenberg,et al.  Simplifying the Implication-Realization Model of Melodic Expectancy , 1997 .

[140]  J. Bharucha,et al.  Priming of chords: Spreading activation or overlapping frequency spectra? , 1987, Perception & psychophysics.

[141]  E. Sober,et al.  The Principle of Parsimony , 1981, The British Journal for the Philosophy of Science.

[142]  Annabel J. Cohen,et al.  Recognition of transposed tone sequences , 1977 .

[143]  N. C. Silver,et al.  A Monte Carlo Evaluation of Tests for Comparing Dependent Correlations , 2003, The Journal of general psychology.

[144]  Xuedong Huang,et al.  Improved topic-dependent language modeling using information retrieval techniques , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[145]  Alan Bundy,et al.  What kind of field is AI , 1990 .

[146]  Burton S. Rosner,et al.  The Perceptual Roles of Melodic Process, Contour, and Form , 1986 .

[147]  Von Hippel,et al.  Melodic-Expectation Rules as Learned Heuristics , 2002 .

[148]  Mari Riess Jones,et al.  Does rule recursion make melodies easier to reproduce? If not, what does? , 1986, Cognitive Psychology.

[149]  J. Cutting,et al.  Selectivity, scope, and simplicity of models: a lesson from fitting judgments of perceived depth. , 1992, Journal of experimental psychology. General.

[150]  Charles Ames,et al.  The Markov Process as a Compositional Model: A Survey and Tutorial , 2017 .

[151]  Darrell Conklin,et al.  Music Generation from Statistical Models , 2003 .

[152]  C. Krumhansl,et al.  Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. , 1982, Psychological review.

[153]  Diana Deutsch,et al.  THE PROCESSING OF PITCH COMBINATIONS , 1999 .

[154]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[155]  Thomas M. Cover,et al.  A convergent gambling estimate of the entropy of English , 1978, IEEE Trans. Inf. Theory.

[156]  L. Cuddy,et al.  Responsiveness of Western adults to pitch-distributional information in melodic sequences , 1995, Psychological research.

[157]  Alan Smaill,et al.  Hierarchical music representation for composition and analysis , 1993, Comput. Humanit..

[158]  Tonya R. Bergeson,et al.  Melodic expectancy in infancy , 1999 .

[159]  D. Povel,et al.  Accents in equitone sequences , 1981, Perception & psychophysics.

[160]  L. Cuddy,et al.  Expectancies generated by melodic intervals: Evaluation of principles of melodic implication in a melody-completion task , 1997, Perception & psychophysics.

[161]  David Huron,et al.  Humdrum and Kern : selective feature encoding , 1997 .

[162]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[163]  Charles Ames,et al.  Cybernetic composer: an overview , 1992 .

[164]  Darrell Conklin,et al.  Representation and Discovery of Vertical Patterns in Music , 2002, ICMAI.

[165]  C. Krumhansl The psychological representation of musical pitch in a tonal context , 1979, Cognitive Psychology.

[166]  Robert B. Cantrick,et al.  A Generative Theory of Tonal Music , 1985 .

[167]  Mark A. Schmuckler,et al.  The performance of global expectations. , 1990 .

[168]  Ralf D. Brown Creativity: What are we to measure? , 1989 .

[169]  Emilios Cambouropoulos,et al.  A general pitch interval representation: Theory and applications , 1996 .

[170]  J. Elman,et al.  Connectionism and developmental psychology. , 1997, Journal of child psychology and psychiatry, and allied disciplines.

[171]  Peter M. Todd,et al.  Modeling the Perception of Tonal Structure with Neural Nets , 1989 .

[172]  C. Krumhansl,et al.  Melodic Expectation in Finnish Spiritual Folk Hymns: Convergence of Statistical, Behavioral, and Computational Approaches , 1999 .

[173]  J. Elman,et al.  Rethinking Innateness: A Connectionist Perspective on Development , 1996 .

[174]  H. C. Longuet-Higgins Artificial intelligence — a new theroretical psychology? , 1981, Cognition.

[175]  M. Schmuckler Expectancy effects in memory for melodies. , 1997, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[176]  Eric Clarke,et al.  Some Aspects of Rhythm and Expression in Performances of Erik Satie's "Gnossienne No. 5" , 1985 .

[177]  N. Chater The Search for Simplicity: A Fundamental Cognitive Principle? , 1999 .

[178]  M. Hickey,et al.  An Application of Amabile's Consensual Assessment Technique for Rating the Creativity of Children's Musical Compositions , 2001 .

[179]  Robert L. Mercer,et al.  An Estimate of an Upper Bound for the Entropy of English , 1992, CL.

[180]  Robert O. Gjerdingen An Experimental Music Theory , 1999 .

[181]  Carol Krumhansl,et al.  Effects of Perceptual Organization and Musical Form on Melodic Expectancies , 1996, Joint International Conference on Cognitive and Systematic Musicology.

[182]  Frederick P. Brooks,et al.  An experiment in musical composition , 1957, IRE Trans. Electron. Comput..

[183]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[184]  Helen Creighton,et al.  Songs and Ballads from Nova Scotia , 1964 .

[185]  E. Narmour The Top-down and Bottom-up Systems of Musical Implication: Building on Meyer's Theory of Emotional Syntax , 1991 .

[186]  Joyce K. Conley Physical correlates of the judged complexity of music by subjects differing in musical background , 1981 .

[187]  Gabriele Paul,et al.  Approaches to abductive reasoning: an overview , 1993, Artificial Intelligence Review.

[188]  B. Lindblom,et al.  Generative theories in language and music descriptions , 1976, Cognition.

[189]  David Cope,et al.  Computer Modeling of Musical Intelligence in EMI , 1992 .

[190]  Mayumi Adachi,et al.  Expectancy in melody: tests of children and adults. , 2002, Journal of experimental psychology. General.

[191]  Hermann Ney,et al.  Distant bigram language modelling using maximum entropy , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[192]  Nicholas Cook The Perception of Large-Scale Tonal Closure , 1987 .

[193]  J. Bartlett,et al.  PSYCHOMUSICOLOGY Spring 1981 THE IMPORTANCE OF 'INTERVAL INFORMATION IN LONG-TERM MEMORY FOR MELODIES , 1981 .

[194]  Kemal Ebcioglu,et al.  An Expert System for Harmonizing Four-Part Chorales , 1988, ICMC.

[195]  Hermann Ney,et al.  Assessment of smoothing methods and complex stochastic language modeling , 1999, EUROSPEECH.

[196]  J. Bharucha,et al.  Anchoring effects in music: The resolution of dissonance , 1984, Cognitive Psychology.

[197]  J. Youngblood Style as Information , 1958 .

[198]  Alan Lomax Song Structure and Social Structure , 1962 .

[199]  Hermann Ney,et al.  Improved backing-off for M-gram language modeling , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[200]  C. Chuan Tone and Voice: A Derivation of the Rules of Voice-Leading from Perceptual Principles , 2001 .

[201]  Max Welling Donald,et al.  Products of Experts , 2007 .

[202]  Ran El-Yaniv,et al.  Universal Classification Applied to Musical Sequences , 1998, ICMC.

[203]  I. Lakatos Falsification and the Methodology of Scientific Research Programmes , 1976 .

[204]  Eugene Narmour,et al.  The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model , 1990 .

[205]  Michael I. Jordan,et al.  Factorial Hidden Markov Models , 1995, Machine Learning.

[206]  I. Lakatos,et al.  Criticism and the Growth of Knowledge: Falsification and the Methodology of Scientific Research Programmes , 1970 .

[207]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[208]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[209]  Ian Cross,et al.  The Analysis and Cognition of Melodic Complexity Eugene Narmour , 1995 .

[210]  T. Eerola,et al.  Expectancy-Based Model of Melodic Complexity , 2000 .

[211]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[212]  Hasan Gürkan Tekman,et al.  Interactions of Perceived Intensity, Duration, and Pitch in Pure Tone Sequences , 1997 .

[213]  Ian H. Witten,et al.  PREDICTION AND ENTROPY OF MUSIC , 1990 .

[214]  Ian H. Witten,et al.  Arithmetic coding revisited , 1998, TOIS.

[215]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[216]  Curtis Roads,et al.  Research in music and artificial intelligence , 1985, CSUR.

[217]  Paul G. Howard,et al.  The design and analysis of efficient lossless data compression systems , 1993 .

[218]  G. Ritchie Assessing Creativity , 2001 .

[219]  I. Cross Music Analysis and Music Perception , 1998 .

[220]  Charles Wallis,et al.  Computation and cognition , 2003, J. Exp. Theor. Artif. Intell..

[221]  Nicholas Cook,et al.  Perception: A perspective from music theory , 1994 .

[222]  Rocky Ross,et al.  Mental models , 2004, SIGA.

[223]  J. Sloboda The Musical Mind: The Cognitive Psychology of Music , 1987 .

[224]  Dominik Hörnel MELONET I: Neural Nets for Inventing Baroque-Style Chorale Variations , 1997, NIPS.

[225]  C. Krumhansl,et al.  Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. , 1982 .

[226]  Alan Smaill,et al.  Automatic Characterisation of Musical Style , 1993, Music Education: An Artificial Intelligence Approach.

[227]  W. Thompson Modeling perceived relationships between melody, harmony, and key , 1993, Perception & psychophysics.

[228]  Somnuk Phon-Amnuaisuk,et al.  Evolving Musical Harmonisation , 1999, ICANNGA.

[229]  Richard C. Pinkerton Information theory and melody. , 1956 .

[230]  T. Kuhn,et al.  The Structure of Scientific Revolutions , 1963 .

[231]  R. Shepard,et al.  Quantification of the hierarchy of tonal functions within a diatonic context. , 1979, Journal of experimental psychology. Human perception and performance.

[232]  Mark Steedman,et al.  A Generative Grammar for Jazz Chord Sequences , 1984 .

[233]  M. Boden The creative mind : myths & mechanisms , 1991 .

[234]  Jordan B. Pollack,et al.  Reduced Memory Representations for Music , 1995, Cogn. Sci..

[235]  Gerald J. Balzano,et al.  The Pitch Set as a Level of Description for Studying Musical Pitch Perception , 1982 .

[236]  R. Shepard,et al.  Tonal Schemata in the Perception of Music in Bali and in the West , 1984 .

[237]  C. Krumhansl,et al.  Mental representations for musical meter. , 1990, Journal of experimental psychology. Human perception and performance.

[238]  Geraint A. Wiggins,et al.  AI Methods for Algorithmic Composition: A Survey, a Critical View and Future Prospects , 1999 .

[239]  F ChenStanley,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[240]  John Kratus,et al.  A Time Analysis of the Compositional Processes Used by Children Ages 7 to 11 , 1989 .

[241]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[242]  Dana Ron,et al.  The power of amnesia: Learning probabilistic automata with variable memory length , 1996, Machine Learning.

[243]  Alan Marsden,et al.  Music, Intelligence and Artificiality , 2000, Readings in Music and Artificial Intelligence.

[244]  Sandra E. Trehub,et al.  Human processing predispositions and musical universals. , 2000 .

[245]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[246]  Jordan B. Pollack,et al.  Recursive Distributed Representations , 1990, Artif. Intell..

[247]  Roy Palmer,et al.  Folk songs collected by Ralph Vaughan Williams , 1983 .

[248]  Slava M. Katz,et al.  Estimation of probabilities from sparse data for the language model component of a speech recognizer , 1987, IEEE Trans. Acoust. Speech Signal Process..

[249]  David Meredith,et al.  PITCH SPELLING ALGORITHMS , 2003 .

[250]  M. R. Jones Dynamic pattern structure in music: Recent theory and research , 1987, Perception & psychophysics.

[251]  MICHAEL P. A. PAGE Modelling the Perception of Musical Sequences with Self-organizing Neural Networks , 1994, Connect. Sci..

[252]  J. R.,et al.  Quantitative analysis , 1892, Nature.

[253]  D. Temperley Communicative Pressure and the Evolution of Musical Styles , 2004 .

[254]  Mari Riess Jones,et al.  Learning and the development of expectancies: An interactionist approach. , 1990 .

[255]  Robert Walker,et al.  Compositional Strategies and Musical Creativity When Composing With Staff Notations Versus Graphic Notations Among Korean , 1999 .

[256]  John Kratus,et al.  Relationships Among Children's Music Audiation and Their Compositional Processes and Products , 1994 .

[257]  Mari Riess Jones,et al.  Music as a stimulus for psychological motion: Part I. Some determinants of expectancies. , 1981 .

[258]  Petri Toiviainen,et al.  Symbolic AI versus Connectionism in Music Research , 2000, Readings in Music and Artificial Intelligence.

[259]  Gerald J. Balzano,et al.  Music perception us detection of pitch-time constraints , 1982 .

[260]  Leonard B. Meyer Meaning in music and information theory. , 1957 .

[261]  Renato De Mori,et al.  A Cache-Based Natural Language Model for Speech Recognition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[262]  N. Jesper Larsson Extended application of suffix trees to data compression , 1996, Proceedings of Data Compression Conference - DCC '96.

[263]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[264]  E. Narmour The Analysis and Cognition of Melodic Complexity: The Implication-Realization Model , 1992 .

[265]  A. Colley,et al.  An Expert-Novice Comparison in Musical Composition , 1992 .

[266]  C. Lee Giles,et al.  Sequence learning: from recognition and prediction to sequential decision making , 2001, IEEE Intelligent Systems.

[267]  Robert O. Gjerdingen,et al.  The Cognition of Basic Musical Structures , 2004 .

[268]  M. Boltz The generation of temporal and melodic expectancies during musical listening , 1993, Perception & psychophysics.

[269]  Neil P. McAngus Todd,et al.  A Sensory-Motor Theory of Rhythm, Time Perception and Beat Induction , 1999 .

[270]  Robert O. Gjerdingen,et al.  Apparent Motion in Music , 1994 .

[271]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[272]  M. R. Jones,et al.  Dynamic attending and responses to time. , 1989, Psychological review.

[273]  Darrell Conklin,et al.  Representation and Discovery of Multiple Viewpoint Patterns , 2001, ICMC.

[274]  Chris Mellish,et al.  Statistical Learning of Harmonic Movement , 1999 .

[275]  Geraint A. Wiggins,et al.  Towards A Framework for the Evaluation of Machine Compositions , 2001 .

[276]  D. Chambless,et al.  Cognitive therapy of anxiety disorders. , 1993, Journal of consulting and clinical psychology.

[277]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[278]  Leon K. Miller,et al.  Determinants of Melody Span in a Developmentally Disabled Musical Savant , 1987 .

[279]  P. Pochet A Quantitative Analysis , 2006 .

[280]  Irène Deliège Grouping Conditions in Listening to Music: An Approach to Lerdahl & Jackendoff's Grouping Preference Rules , 1987 .

[281]  Eduardo Miranda,et al.  You have printed the following article : A Framework for the Evaluation of Music Representation Systems , 2008 .

[282]  Ron McClamrock,et al.  Marr's three levels: A re-evaluation , 1991, Minds and Machines.

[283]  Mark B. Sandler,et al.  Polyphonic Score Retrieval Using Polyphonic Audio Queries: A Harmonic Modeling Approach , 2003, ISMIR.

[284]  W. Dowling Scale and contour: Two components of a theory of memory for melodies. , 1978 .

[285]  Douglas Eck Finding downbeats with a relaxation oscillator , 2002, Psychological research.

[286]  Elizabeth K. Johnson,et al.  Statistical learning of tone sequences by human infants and adults , 1999, Cognition.

[287]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[288]  L. Knopoff,et al.  Entropy as a Measure of Style: The Influence of Sample Length , 1983 .

[289]  Barney Childs,et al.  Experimental Music , 1975 .

[290]  Diana Deutsch,et al.  9 – The Processing of Pitch Combinations , 1982 .

[291]  Arilyn Boltz Time judgments of musical endings: Effects of expectancies on the “filled interval effect” , 1989, Perception & psychophysics.

[292]  D. Deutsch,et al.  The Internal Representation of Pitch Sequences in Tonal Music , 1981 .

[293]  John G. Cleary,et al.  Unbounded length contexts for PPM , 1995, Proceedings DCC '95 Data Compression Conference.

[294]  J. Plucker,et al.  Handbook of Creativity: Psychometric Approaches to the Study of Human Creativity , 1998 .

[295]  Ron Kohavi,et al.  Wrappers for performance enhancement and oblivious decision graphs , 1995 .

[296]  Bret Aarden Dynamic melodic expectancy , 2003 .