Hg II /Ag I -mediated base pairs and their NMR spectroscopic studies

[1]  J. Kondo,et al.  Structures, physicochemical properties, and applications of T-Hg(II)-T, C-Ag(I)-C, and other metallo-base-pairs. , 2015, Chemical communications.

[2]  Kyoko Furuita,et al.  Exploring a DNA Sequence for the Three-Dimensional Structure Determination of a Silver(I)-Mediated C-C Base Pair in a DNA Duplex By 1H NMR Spectroscopy , 2015, Nucleosides, nucleotides & nucleic acids.

[3]  J. Kondo,et al.  High-Resolution Crystal Structure of a Silver(I)-RNA Hybrid Duplex Containing Watson-Crick-like C-Silver(I)-C Metallo-Base Pairs. , 2015, Angewandte Chemie.

[4]  Chojiro Kojima,et al.  Direct detection of the mercury-nitrogen bond in the thymine-Hg(II)-thymine base-pair with (199)Hg NMR spectroscopy. , 2015, Chemical communications.

[5]  Itamar Willner,et al.  Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. , 2014, Accounts of chemical research.

[6]  I. Willner,et al.  From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. , 2014, Chemical reviews.

[7]  J. Kondo,et al.  The structure of metallo-DNA with consecutive thymine–HgII–thymine base pairs explains positive entropy for the metallo base pair formation , 2013, Nucleic acids research.

[8]  M. Waller,et al.  A QM/MM refinement of an experimental DNA structure with metal-mediated base pairs. , 2013, Journal of inorganic biochemistry.

[9]  M. Straka,et al.  Formation of a thymine-Hg(II)-thymine metal-mediated DNA base pair: proposal and theoretical calculation of the reaction pathway. , 2013, Chemistry.

[10]  G. Meyer,et al.  A New Strategy for the Synthetic Assembly of Inorganic‒Organic Silver(I)-Polyoxometalate Hybrid Structures Employing Noncovalent Interactions between Theobromine Ligands , 2013 .

[11]  E. Molins,et al.  Experimental and theoretical studies on the coordination chemistry of the N1-hexyl substituted pyrimidines (uracil, 5-fluorouracil and cytosine). , 2013, Dalton transactions.

[12]  B. Ravoo,et al.  Cooperative formation of silver(I)-mediated base pairs. , 2012, Chemical communications.

[13]  A. Ono,et al.  Thermodynamic and structural properties of the specific binding between Ag⁺ ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair. , 2012, Biochimie.

[14]  P. Bouř,et al.  Detection of mercury-TpT dinucleotide binding by Raman spectra: a computational study. , 2012, The journal of physical chemistry. A.

[15]  Mitsuhiko Shionoya,et al.  Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs. , 2012, Accounts of chemical research.

[16]  P. Bouř,et al.  Raman spectroscopic detection of the T-HgII-T base pair and the ionic characteristics of mercury , 2012, Nucleic acids research.

[17]  A. Ono,et al.  Binding of metal ions by pyrimidine base pairs in DNA duplexes. , 2011, Chemical Society reviews.

[18]  S. Schneider,et al.  Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair. , 2011, Nature chemistry.

[19]  D. A. Megger,et al.  Contiguous metal-mediated base pairs comprising two Ag(I) ions. , 2011, Chemistry.

[20]  M. Straka,et al.  On the role of mercury in the non-covalent stabilisation of consecutive U-Hg(II)-U metal-mediated nucleic acid base pairs: metallophilic attraction enters the world of nucleic acids. , 2011, Physical chemistry chemical physics : PCCP.

[21]  A. Ono,et al.  Hg(II) ion specifically binds with T:T mismatched base pair in duplex DNA. , 2010, Chemistry.

[22]  R. Sigel,et al.  Solution structure of a DNA double helix with consecutive metal-mediated base pairs. , 2010, Nature chemistry.

[23]  V. Deflon,et al.  Cationic and neutral phenylmercury(II) complexes with heterocyclic thione ligands. X-ray structures of [HgPh(dmpymtH)][BF4] · H2O and [{HgPh}2(μ-dtu)] , 2009 .

[24]  A. Ono,et al.  Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. , 2008, Chemical communications.

[25]  A. Ono,et al.  Nitrogen-15 NMR spectroscopy of N-metallated nucleic acids: insights into 15N NMR parameters and N-metal bonds. , 2008, Dalton transactions.

[26]  E. Meggers,et al.  Duplex Structure of a Minimal Nucleic Acid , 2008, Journal of the American Chemical Society.

[27]  R. Sigel,et al.  Using in vitro transcription to construct scaffolds for one-dimensional arrays of mercuric ions. , 2008, Journal of inorganic biochemistry.

[28]  T. Carell,et al.  DNA‐Metall‐Basenpaare , 2007 .

[29]  Chojiro Kojima,et al.  15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex. , 2007, Journal of the American Chemical Society.

[30]  C. Kojima,et al.  NMR Spectroscopic Study of a DNA Duplex with Mercury-Mediated T-T Base Pairs , 2006, Nucleosides, nucleotides & nucleic acids.

[31]  Effendy,et al.  Synthesis, spectroscopy and structural characterization of silver(I) complexes containing unidentate N-donor azole-type ligands , 2006 .

[32]  Takashi Fujimoto,et al.  MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. , 2006, Journal of the American Chemical Society.

[33]  H. Sigel,et al.  Metal ion-binding properties of (N3)-deprotonated uridine, thymidine, and related pyrimidine nucleosides in aqueous solution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Taira,et al.  Detection of RNA nucleobase metalation by NMR spectroscopy. , 2005, Chemical communications.

[35]  Roger A. Jones,et al.  Differential binding of Mg2+, Zn2+, and Cd2+ at two sites in a hammerhead ribozyme motif, determined by 15N NMR. , 2004, Journal of the American Chemical Society.

[36]  C. Kojima,et al.  Nature of the chemical bond formed with the structural metal ion at the A9/G10.1 motif derived from hammerhead ribozymes. , 2004, Journal of the American Chemical Society.

[37]  H. Wagenknecht Metallionen‐vermittelte DNA‐Basenpaarung und Anordnungen von Metallen in künstlicher DNA: auf dem Weg zu neuen Nanobauelementen , 2003 .

[38]  T. Carell,et al.  Electrontransfer through DNA and metal-containing DNA. , 2003, Organic & biomolecular chemistry.

[39]  P. Dumas,et al.  A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. , 2003, Nucleic acids research.

[40]  Kentaro Tanaka,et al.  A Discrete Self-Assembled Metal Array in Artificial DNA , 2003, Science.

[41]  Kentaro Tanaka,et al.  Efficient incorporation of a copper hydroxypyridone base pair in DNA. , 2002, Journal of the American Chemical Society.

[42]  M. Kainosho,et al.  Identification of the metal ion binding site on an RNA motif from hammerhead ribozymes using (15)N NMR spectroscopy. , 2002, Journal of the American Chemical Society.

[43]  D. Michalska,et al.  Vibrational spectra of 1-methylthyminate complexes with mercury(II) and potassium and ab initio calculations of the 1-MeT anion , 2001 .

[44]  P. Schultz,et al.  Structure of a copper-mediated base pair in DNA. , 2001, Journal of the American Chemical Society.

[45]  Peter G. Schultz,et al.  A Novel Copper-Mediated DNA Base Pair , 2000 .

[46]  R. Sigel,et al.  Heavy metal mutagenicity: insights from bioinorganic model chemistry. , 2000, Journal of inorganic biochemistry.

[47]  Kentaro Tanaka,et al.  Synthesis of a Novel Nucleoside for Alternative DNA Base Pairing through Metal Complexation. , 1999, The Journal of organic chemistry.

[48]  Roger A. Jones,et al.  15N NMR of RNA Fragments Containing Specifically Labeled Tandem GA Pairs , 1998 .

[49]  F. Zamora,et al.  A bis(9-methyladeninium) complex of Hg(II) with a highly irregular coordination geometry: [Hg(9-MeAH-N7)2(H2O)(NO3)3]ClO4 , 1998 .

[50]  Pekka Pyykkö,et al.  Strong Closed-Shell Interactions in Inorganic Chemistry. , 1997, Chemical reviews.

[51]  Luigi G. Marzilli,et al.  Mercury(II) Site-Selective Binding to a DNA Hairpin. Relationship of Sequence-Dependent Intra- and Interstrand Cross-Linking to the Hairpin-Duplex Conformational Transition. , 1996, Inorganic chemistry.

[52]  E. Sletten,et al.  Sequence-selective interaction between mercury(II) ions and the DNA dodecamer [d(GCCGATATCGGC)]2 studied by 1H NMR spectroscopy. , 1996, Acta chemica Scandinavica.

[53]  E. Sletten,et al.  Interaction of Mercury(II) with the DNA Dodecamer CGCGAATTCGCG. A 1H and 15N NMR Study , 1994 .

[54]  S. Menzer,et al.  HgCl2 coordination to guanine derivatives: structural and spectroscopic studies on the interactions with 9-ethylguanine, 1,9-dimethylguanine and 2-amino-6-methoxy-9-methylpurine (6,9-dimethylguanine) , 1993 .

[55]  M. Sabat,et al.  Metal-modified nucleobase pairs: mixed adenine, thymine complexes of trans-a2platinum(II) (a = ammonia, methylamine) with Watson-Crick and Hoogsteen orientations of the bases , 1993 .

[56]  S. Menzer,et al.  Silver(I)-modified base pairs involving complementary (G, C) [guanine, cytosine] and noncomplementary (A, C) [adenine, cytosine] nucleobases. On the possible structural role of aqua ligands in metal-modified nucleobase pairs , 1992 .

[57]  W. Sheldrick,et al.  Preparation and structural characterization of methylmercury(II) complexes of the minor tRNA-base 1-methyladenine , 1988 .

[58]  Roger A. Jones,et al.  Nitrogen-15-labeled oligodeoxynucleotides. Characterization by 15N NMR of d[CGTACG] containing 15N6- or 15N1-labeled deoxyadenosine , 1987 .

[59]  E. Buncel,et al.  Metal ion-biomolecule interactions. XII. 1H and 13C NMR evidence for the preferred reaction of thymidine over guanosine in exchange and competition reactions with Mercury(II) and Methylmercury(II) , 1985 .

[60]  R. Kumar,et al.  Metal ion–biomolecule interactions. Part IX. Metal ion–C5 binding in a pyrimidine nucleoside. Ready formation of C5HgN and C5HgS bonds , 1984 .

[61]  W. Saenger,et al.  Structure of bis(9-methylhypoxanthine)silver(I) nitrate dihydrate, [Ag(C6H6N4O)2](NO3).2H2O , 1984 .

[62]  M. Bell,et al.  15N and 199Hg magnetic resonance spectral investigation of inosine protonation and diamagnetic metal ion complexation , 1983 .

[63]  L. Marzilli,et al.  Nucleoside complexing: a carbon-13 NMR spectroscopic study of binding of metal ions to guanosine and related nucleosides in solution. Evidence for O-6 binding under basic conditions , 1982 .

[64]  J. B. Stothers,et al.  Diamagnetic metal ion – nucleoside interactions in solution as studied by 15N nuclear magnetic resonance , 1982 .

[65]  N. Kallenbach,et al.  Binding of mercury(II) to poly(dA-dT) studied by proton nuclear magnetic resonance. , 1982, Biochemistry.

[66]  F. Bélanger-Gariépy,et al.  Crystal structure of bis(9-methylhypoxanthine)silver(I) perchlorate monohydrate, a model complex for the silver-poly(I) system , 1980 .

[67]  A. Beauchamp,et al.  Metal binding to four different sites in adenine ligands. Crystal structures of 2:1 methylmercury complexes with adenine and 9-methyladenine , 1979 .

[68]  A. Canty,et al.  Heavy-metal-nucleoside interactions. 13. Synthesis and spectroscopic study of organomercury derivatives of guanosine and thymidine , 1979 .

[69]  J. R. Demember,et al.  Uracil and its interaction with silver ion in aqueous alkaline media. , 1975, Journal of the American Chemical Society.

[70]  R. Tobias,et al.  Heavy metal-nucleoside interactions. Binding of methylmercury(II) to inosine and catalysis of the isotopic exchange of the C-8 hydrogen studied by 1-H nuclear magnetic resonance and raman difference spectrophotometry. , 1975, Biochemistry.

[71]  R. Tobias,et al.  Heavy metal-nucleotide reactions. IV. Nature of the reaction between mercury(II) and uridine or thymidine. Vibrational spectroscopic studies on binding to N(3), C(4)=O, and C(5) of the uracil base , 1975 .

[72]  R. Stewart,et al.  The crystal and molecular structure of a 2:1 complex of 1-methylthymine-mercury (II). , 1974, Biochemistry.

[73]  R. Tobias,et al.  Heavy metal-nucleotide interactions. II. Binding of methylmercury(II) to purine nucleosides and nucleotides studied by Raman difference spectroscopy. , 1974, Journal of the American Chemical Society.

[74]  M. Sundaralingam,et al.  Mercury binding to nucleic acids. Crystal and molecular structures of 2:1 complexes of uracil-mercuric chloride and dihydrouracil-mercuric chloride. , 1971, Biochemistry.

[75]  Jens Müller,et al.  Nucleic Acids With Metal‐Mediated Base Pairs and Their Applications , 2013 .

[76]  Jun Chen,et al.  Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. , 2011, Nature chemistry.

[77]  M. Straka,et al.  Ab initio studies of the dimers (HgH2)2 and (HgMe2)2. Metallophilic attraction and the van der Waals radii of mercury , 2000 .

[78]  B. Lippert Effects of metal-ion binding on nucleobase pairing: stabilization, prevention and mismatch formation† , 1997 .

[79]  Roger A. Jones,et al.  Nitrogen-15-labeled oligodeoxynucleotides. 8. Use of 15N NMR to probe Hoogsteen hydrogen bonding at guanine and adenine N7 atoms of a DNA triplex , 1995 .

[80]  J. Charland,et al.  Substitution of both amino protons by CH3Hg+ ions in adenine and cytosine , 1983 .

[81]  R. Savoie,et al.  Raman and infrared spectra of methylmercury complexes of adenine , 1982 .

[82]  Y. Kyōgoku Application of 15N NMR Spectroscopy to Studies of the Intermolecular Interaction of Biomolecules , 1981 .

[83]  H. Lönnberg,et al.  Stability constants for some transition metal complexes of adenosine and 9-(β-D-ribofuranosyl)purine in aqueous solution , 1981 .

[84]  H. Peresie,et al.  Heavy metal-nucleotide interactions. IX. Raman difference spectroscopic studies on the binding of CH3Hg(II) to 1-methylthymine, thymidine-5'-monophosphate, DNA models and native DNA. , 1977, Bioinorganic chemistry.

[85]  L. Ehrenberg,et al.  The Molecular and Crystal Structure of Diimidazole Silver(I) Nitrate, Ag(C3H4N2)2NO3. , 1971 .