Physicochemical vs. Vibrational Descriptors for Prediction of Odor Receptor Responses

Responses of olfactory receptors (ORs) can be predicted by applying machine learning methods on a multivariate encoding of an odorant’s chemical structure. Physicochemical descriptors that encode features of the molecular graph are a popular choice for such an encoding. Here, we explore the EVA descriptor set, which encodes features derived from the vibrational spectrum of a molecule. We assessed the performance of Support Vector Regression (SVR) and Random Forest Regression (RFR) to predict the gradual response of Drosophila ORs. We compared a 27‐dimensional variant of the EVA descriptor against a set of 1467 descriptors provided by the eDragon software package, and against a 32‐dimensional subset thereof that has been proposed as the basis for an odor metric consisting of 32 descriptors (HADDAD). The best prediction performance was reproducibly achieved using SVR on the highest‐dimensional feature set. The low‐dimensional EVA and HADDAD feature sets predicted odor‐OR interactions with similar accuracy. Adding charge and polarizability information to the EVA descriptor did not improve the results but rather decreased predictive power. Post‐hoc in vivo measurements confirmed these results. Our findings indicate that EVA provides a meaningful low‐dimensional representation of odor space, although EVA hardly outperformed “classical” descriptor sets.

[1]  Gerta Rücker,et al.  y-Randomization and Its Variants in QSPR/QSAR , 2007, J. Chem. Inf. Model..

[2]  J. Mainland,et al.  Odor Coding by a Mammalian Receptor Repertoire , 2009, Science Signaling.

[3]  G. M. Dyson The scientific basis of odour , 1938 .

[4]  Dimitris Georganakis,et al.  Molecular Vibration-Sensing Component in Human Olfaction , 2013, BDJ.

[5]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[6]  C Giovanni Galizia,et al.  The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). , 2006, Journal of neurobiology.

[7]  R. Khan,et al.  Predicting Odor Pleasantness from Odorant Structure: Pleasantness as a Reflection of the Physical World , 2007, The Journal of Neuroscience.

[8]  Gisbert Schneider,et al.  Predicting olfactory receptor neuron responses from odorant structure , 2007, Chemistry Central journal.

[9]  Zhen Li,et al.  ODORactor: a web server for deciphering olfactory coding , 2011, Bioinform..

[10]  Alexander Tropsha,et al.  Best Practices for QSAR Model Development, Validation, and Exploitation , 2010, Molecular informatics.

[11]  Igor V. Tetko,et al.  Virtual Computational Chemistry Laboratory – Design and Description , 2005, J. Comput. Aided Mol. Des..

[12]  A. Fiala,et al.  Calcium Imaging of Neural Activity in the Olfactory System of Drosophila , 2012 .

[13]  John R. Carlson,et al.  Coding of Odors by a Receptor Repertoire , 2006, Cell.

[14]  M. Ford,et al.  Optimising the EVA descriptor for prediction of biological activity. , 2004, Organic & biomolecular chemistry.

[15]  M. Frisch,et al.  Gaussian 94 user's reference , 1996 .

[16]  L. Turin,et al.  A spectroscopic mechanism for primary olfactory reception. , 1996, Chemical senses.

[17]  David Harel,et al.  A metric for odorant comparison , 2008, Nature Methods.

[18]  Gisbert Schneider,et al.  Graph Kernels for Molecular Similarity , 2010, Molecular informatics.

[19]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[20]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[21]  John B. O. Mitchell,et al.  A structure-odour relationship study using EVA descriptors and hierarchical clustering. , 2004, Organic & biomolecular chemistry.

[22]  Peter Willett,et al.  Evaluation of a novel infrared range vibration-based descriptor (EVA) for QSAR studies. 1. General application , 1997, J. Comput. Aided Mol. Des..

[23]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[24]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[25]  Allan M. Ferguson,et al.  EVA: A new theoretically based molecular descriptor for use in QSAR/QSPR analysis , 1997, J. Comput. Aided Mol. Des..

[26]  Barry J. Dickson,et al.  Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System , 2005, Current Biology.

[27]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[28]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[29]  Martin Strauch,et al.  Integrating Heterogeneous Odor Response Data into a Common Response Model: A DoOR to the Complete Olfactome , 2010, Chemical senses.

[30]  Thomas P Hettinger Olfaction is a chemical sense, not a spectral sense , 2011, Proceedings of the National Academy of Sciences.

[31]  M. I. Franco,et al.  Molecular vibration-sensing component in Drosophila melanogaster olfaction , 2011, Proceedings of the National Academy of Sciences.

[32]  Fei Yuan,et al.  Chemical Descriptors Are More Important Than Learning Algorithms for Modelling , 2012, Molecular informatics.

[33]  Roberto Todeschini,et al.  Comments on the Definition of the Q2 Parameter for QSAR Validation , 2009, J. Chem. Inf. Model..

[34]  R. Khan,et al.  Perceptual convergence of multi-component mixtures in olfaction implies an olfactory white , 2012, Proceedings of the National Academy of Sciences.