Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms

[1]  B. Shubert A Sequential Method Seeking the Global Maximum of a Function , 1972 .

[2]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  David E. Johnson,et al.  Introduction to Filter Theory , 1976 .

[5]  V. A. Grishagin,et al.  A parallel method for finding the global minimum of univariate functions , 1994 .

[6]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[7]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[8]  Kalyanmoy Deb,et al.  Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems , 1995, Complex Syst..

[9]  Pasquale Daponte,et al.  Fast detection of the first zero-crossing in a measurement signal set , 1996 .

[10]  Vladimir A. Grishagin,et al.  Parallel Characteristical Algorithms for Solving Problems of Global Optimization , 1997, J. Glob. Optim..

[11]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[12]  Pasquale Daponte,et al.  Two methods for solving optimization problems arising in electronic measurements and electrical engineering , 1999, SIAM J. Optim..

[13]  Y. D. Sergeyev,et al.  Global Optimization with Non-Convex Constraints - Sequential and Parallel Algorithms (Nonconvex Optimization and its Applications Volume 45) (Nonconvex Optimization and Its Applications) , 2000 .

[14]  Yaroslav D. Sergeyev,et al.  Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints , 2001, J. Glob. Optim..

[15]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[16]  János D. Pintér,et al.  Global Optimization: Software, Test Problems, and Applications , 2002 .

[17]  Lonnie Hamm,et al.  GLOBAL OPTIMIZATION METHODS , 2002 .

[18]  Inmaculada García,et al.  Interval Algorithms for Finding the Minimal Root in a Set of Multiextremal One-Dimensional Nondifferentiable Functions , 2002, SIAM J. Sci. Comput..

[19]  Yaroslav D. Sergeyev,et al.  Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization , 2003, TOMS.

[20]  Yaroslav D. Sergeyev,et al.  Finding the Minimal Root of an Equation with the Multiextremal and Nondifferentiable Left-Hand Part , 2001, Numerical Algorithms.

[21]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[22]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[23]  K. Hamacher On stochastic global optimization of one-dimensional functions , 2005 .

[24]  A. ilinskas,et al.  One-Dimensional global optimization for observations with noise , 2005 .

[25]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[26]  A. A. Zhigli︠a︡vskiĭ,et al.  Stochastic Global Optimization , 2007 .

[27]  Yaroslav D. Sergeyev,et al.  A one-dimensional local tuning algorithm for solving GO problems with partially defined constraints , 2007, Optim. Lett..

[28]  Y. Sergeyev,et al.  Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions , 2008 .

[29]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[30]  Xin-She Yang,et al.  Firefly Algorithms for Multimodal Optimization , 2009, SAGA.

[31]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[32]  Ai-Qin Mu,et al.  A Modified Particle Swarm Optimization Algorithm , 2009 .

[33]  Antanas Zilinskas,et al.  On similarities between two models of global optimization: statistical models and radial basis functions , 2010, J. Glob. Optim..

[34]  James M. Calvin,et al.  An Adaptive Univariate Global Optimization Algorithm and Its Convergence Rate for Twice Continuously Differentiable Functions , 2012, J. Optim. Theory Appl..

[35]  Yaroslav D. Sergeyev,et al.  Lipschitz global optimization methods in control problems , 2013, Autom. Remote. Control..

[36]  Yaroslav D. Sergeyev,et al.  Acceleration of Univariate Global Optimization Algorithms Working with Lipschitz Functions and Lipschitz First Derivatives , 2013, SIAM J. Optim..

[37]  Xin-She Yang,et al.  Firefly Algorithm: Recent Advances and Applications , 2013, ArXiv.

[38]  Roman G. Strongin,et al.  Introduction to Global Optimization Exploiting Space-Filling Curves , 2013 .

[39]  Jonathan Gillard,et al.  Optimization challenges in the structured low rank approximation problem , 2013, J. Glob. Optim..

[40]  Julius Zilinskas,et al.  Globally-biased Disimpl algorithm for expensive global optimization , 2014, Journal of Global Optimization.

[41]  Yaroslav D. Sergeyev,et al.  Deterministic approaches for solving practical black-box global optimization problems , 2015, Adv. Eng. Softw..

[42]  Yaroslav D. Sergeyev,et al.  On Deterministic Diagonal Methods for Solving Global Optimization Problems with Lipschitz Gradients , 2015 .

[43]  Yaroslav D. Sergeyev,et al.  A deterministic global optimization using smooth diagonal auxiliary functions , 2015, Commun. Nonlinear Sci. Numer. Simul..

[44]  Yaroslav D. Sergeyev,et al.  Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants , 2015, Commun. Nonlinear Sci. Numer. Simul..

[45]  Y. Sergeyev,et al.  Comments upon the usage of derivatives in Lipschitz global optimization , 2016 .

[46]  D. Kvasov,et al.  One-dimensional global search: Nature-inspired vs. Lipschitz methods , 2016 .

[47]  Yaroslav D. Sergeyev,et al.  Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization , 2016, J. Optim. Theory Appl..

[48]  Y. Sergeyev,et al.  Space-filling curves and multiple estimates of Hölder constants in derivative-free global optimization , 2016 .

[49]  Ilya Lebedev,et al.  Solving global optimization problems on GPU cluster , 2016 .

[50]  Vladimir A. Grishagin,et al.  Global search acceleration in the nested optimization scheme , 2016 .

[51]  D. Kvasov,et al.  Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations , 2017 .