Words and Bisimulations of Dynamical Systems

In this paper we study bisimulations on dynamical systems through a given partition. Our aim is to give a new vision of the notion of bisimulation by using words. To achieve this goal, we encode the trajectories of the transition system as words. This method was introduced in our paper ''On o-minimal hybrid systems'' in order to give a new proof of the existence of a finite bisimulation for o-minimal hybrid systems (as previously proved in a paper by Lafferriere G., Pappas G.J. and Sastry S.). Here we want to provide a systematic study of this method in order to obtain a procedure for building finite bisimulations based on words.

[1]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[2]  Véronique Bruyère,et al.  Automata on Linear Orderings , 2002, Developments in Language Theory.

[3]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[4]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[5]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[6]  A. R. D. Mathias,et al.  NON‐WELL‐FOUNDED SETS (CSLI Lecture Notes 14) , 1991 .

[7]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[8]  Nicolai Vorobjov,et al.  Upper and Lower Bounds on Sizes of Finite Bisimulations of Pfaffian Hybrid Systems , 2006, CiE.

[9]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[10]  D. Caucal Bisimulation Of Context-Free Grammars And Of Pushdown Automata , 1995 .

[11]  Nicolas Halbwachs,et al.  Minimal Model Generation , 1990, CAV.

[12]  J. Truss,et al.  Infinite permutation groups II. Subgroups of small index , 1989 .

[13]  Thomas A. Henzinger,et al.  Hybrid Automata with Finite Bisimulatioins , 1995, ICALP.

[14]  A. Schaft,et al.  State maps of general behaviors, their lattice structure and bisimulations , 2004 .

[15]  Nicolai Vorobjov,et al.  Pfaffian Hybrid Systems , 2004, CSL.

[16]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[17]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[18]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[19]  Thomas Brihaye,et al.  On the expressiveness and decidability of o-minimal hybrid systems , 2005, J. Complex..

[20]  Sergio Yovine,et al.  On the Decidability of the Reachability Problem for Planar Differential Inclusions , 2001, HSCC.

[21]  L. van den Dries,et al.  Tame Topology and O-minimal Structures , 1998 .

[22]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[23]  Jennifer M. Davoren,et al.  Topologies, continuity and bisimulations , 1999, RAIRO Theor. Informatics Appl..

[24]  Alexander Moshe Rabinovich,et al.  Automata over continuous time , 2003, Theor. Comput. Sci..

[25]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[26]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[27]  A. Wilkie TAME TOPOLOGY AND O-MINIMAL STRUCTURES (London Mathematical Society Lecture Note Series 248) By L OU VAN DEN D RIES : 180 pp., £24.95 (US$39.95, LMS Members' price £18.70), ISBN 0 521 59838 9 (Cambridge University Press, 1998). , 2000 .

[28]  Karl Henrik Johansson,et al.  Towards a Geometric Theory of Hybrid Systems , 2000, HSCC.