Questions on generalised Baire spaces

Yurii Khomskii1∗, Giorgio Laguzzi2, Benedikt Löwe1,3, and Ilya Sharankou1 1 Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany 2 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstraße 1, 79104 Freiburg im Breisgau, Germany 3 Institute for Logic, Language and Computation, Universiteit van Amsterdam, Postbus 94242, 1090 GE Amsterdam, The Netherlands

[1]  Saharon Shelah,et al.  Can you take Solovay’s inaccessible away? , 1984 .

[2]  Sy-David Friedman Consistency of the Silver dichotomy in generalised Baire space , 2014 .

[3]  Y. D. Khomskii,et al.  Regularity Properties and Definability in the Real Number Continuum: Idealized forcing, polarized partitions, Hausdorff gaps and mad families in the projective hierarchy , 2007 .

[4]  Jan van Eijck,et al.  Group actions and countable models , 2016 .

[5]  Lorenzo Galeotti A Candidate for the Generalised Real Line , 2016, CiE.

[6]  Avner Landver,et al.  Baire numbers, uncountable Cohen sets and perfect-set forcing , 1992, Journal of Symbolic Logic.

[7]  Sy-David Friedman,et al.  Analytic equivalence relations and bi-embeddability , 2011, The Journal of Symbolic Logic.

[8]  Haim Judah,et al.  Set Theory: On the Structure of the Real Line , 1995 .

[9]  Philipp Lücke,et al.  Locally $\Sigma _{1}$-definable well-orders of ${\rm H}(\kappa ^+)$ , 2014 .

[10]  Saharon Shelah The combinatorics of reasonable ultrafilters , 2004 .

[11]  Andreas Blass,et al.  Combinatorial Cardinal Characteristics of the Continuum , 2010 .

[12]  Jouko Väänänen,et al.  Trees and π11-subsets of ω1ω , 1993 .

[13]  Marcia J. Groszek,et al.  A basis theorem for perfect sets , 1998, Bull. Symb. Log..

[14]  Matteo Viale Category forcings, MM^{+++}, and generic absoluteness for the theory of strong forcing axioms , 2013 .

[15]  Moti Gitik,et al.  On the splitting number at Regular Cardinals , 2015, J. Symb. Log..

[16]  Jörg Brendle,et al.  Solovay-type characterizations for forcing-algebras , 1997, Journal of Symbolic Logic.

[17]  Philipp Schlicht,et al.  PERFECT SUBSETS OF GENERALIZED BAIRE SPACES AND LONG GAMES , 2017, The Journal of Symbolic Logic.

[18]  Philipp Schlicht,et al.  The Hurewicz dichotomy for generalized Baire spaces , 2015, 1506.03364.

[19]  Jorg Brendle,et al.  Strolling through paradise , 2007 .

[20]  J. Conway On Numbers and Games , 1976 .

[21]  Tapani Hyttinen,et al.  A Borel-reducibility Counterpart of Shelah's Main Gap Theorem , 2016 .

[22]  S. Shelah,et al.  Cofinality spectrum theorems in model theory, set theory and general topology , 2012, 1208.5424.

[23]  Philipp Schlicht,et al.  Generalized Choquet spaces , 2016 .

[24]  Saharon Shelah,et al.  Two inequalities between cardinal invariants , 2015 .

[25]  Philipp Schlicht,et al.  Continuous images of closed sets in generalized Baire spaces , 2015 .

[26]  Sy-David Friedman,et al.  A null ideal for inaccessibles , 2017, Arch. Math. Log..

[27]  Jouko Väänänen,et al.  Trees and -subsets of ω1 ω 1 , 1993 .

[28]  Andrew D. Brooke-Taylor,et al.  A variant proof of Con(b , 2014 .

[29]  Saharon Shelah,et al.  Cardinal invariants Bk and Tk , 2002 .

[30]  ANDREW D. BROOKE-TAYLOR SMALL u κ AND LARGE 2 κ FOR SUPERCOMPACT κ , 2012 .

[31]  Saharon Shelah,et al.  Reasonable Ultrafilters, Again , 2011, Notre Dame J. Formal Log..

[32]  David Asperó,et al.  Definable well-orders of H(ω2) and GCH , 2012, J. Symb. Log..

[33]  Sy-David Friedman,et al.  Condensation and large cardinals , 2011 .

[34]  Tapani Hyttinen,et al.  Borel* Sets in the Generalised Baire Space , 2012 .

[35]  Luca Motto Ros The descriptive set-theoretical complexity of the embeddability relation on models of large size , 2013, Ann. Pure Appl. Log..

[36]  F. Stephan,et al.  Set theory , 2018, Mathematical Statistics with Applications in R.

[37]  John R. Steel,et al.  A proof of projective determinacy , 1989 .

[38]  Saharon Shelah,et al.  Cardinal Invariants Above the Continuum , 1995, Ann. Pure Appl. Log..

[39]  Sy-David Friedman,et al.  Cardinal characteristics at κ in a small u(κ) model , 2015, Ann. Pure Appl. Log..

[40]  R. Vaught Invariant sets in topology and logic , 1974 .

[41]  Jouko A. Väänänen,et al.  Boolean-Valued Second-Order Logic , 2015, Notre Dame J. Formal Log..

[42]  ANDREAS BLASS,et al.  MAD FAMILIES AND THEIR NEIGHBORS , 2006 .

[43]  A. Louveau,et al.  Complete analytic equivalence relations , 2005 .

[44]  H. H. Hung,et al.  Spaces homeomorphic to $\left( {2^\alpha } \right)_\alpha$ , 1973 .

[45]  David Asperó,et al.  Large cardinals and locally defined well-orders of the universe , 2009, Ann. Pure Appl. Log..

[46]  Sy-David Friedman,et al.  Generalized Descriptive Set Theory and Classification Theory , 2012, 1207.4311.

[47]  Menachem Magidor,et al.  Universally Baire Sets of Reals , 1992 .

[48]  Saharon Shelah,et al.  On strong measure zero subsets of $^{κ}2$ , 2001 .

[49]  Daisuke Ikegami Forcing absoluteness and regularity properties , 2010, Ann. Pure Appl. Log..

[50]  Sy-David Friedman,et al.  Regularity properties on the generalized reals , 2016, Ann. Pure Appl. Log..

[51]  W. Wistar Comfort,et al.  Spaces Homeomorphic to (2α)α , 1974 .

[52]  Aapo Halko Negligible subsets of the generalized Baire space ω_1^ω_1 , 1996 .

[53]  ON CON(dλ> COVλ(MEAGRE)) , .

[54]  Saharon Shelah,et al.  CARDINAL INVARIANTS bκ AND tκ , 2000 .

[55]  Saharon Shelah,et al.  A parallel to the null ideal for inaccessible $$\lambda $$λ: Part I , 2012, Arch. Math. Log..

[56]  Lorenzo Galeotti Computable Analysis Over the Generalized Baire Space , 2015 .

[57]  Sy-David Friedman,et al.  On Borel Reducibility in Generalised Baire Space , 2014 .

[58]  Jindrich Zapletal,et al.  Splitting number at uncountable cardinals , 1997, Journal of Symbolic Logic.

[59]  Jörg Brendle,et al.  Silver Measurability and its relation to other regularity properties , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.

[60]  Benjamin Naumann,et al.  Classical Descriptive Set Theory , 2016 .

[61]  Philipp Lücke,et al.  Simplest possible locally definable well-orders , 2017 .

[62]  Giorgio Laguzzi Generalized Silver and Miller measurability , 2015, Math. Log. Q..

[63]  Matthew Foreman Review: Donald A. Martin, John R. Steel, Projective Determinacy; W. Hugh Woodin, Supercompact Cardinals, Sets of Reals, and Weakly Homogeneous Trees; Donald A. Martin, John R. Steel, A Proof of Projective Determinacy , 1992 .

[64]  Saharon Shelah,et al.  The ultrafilter number for singular cardinals , 2012, 1201.1713.