Questions on generalised Baire spaces
暂无分享,去创建一个
Benedikt Löwe | Yurii Khomskii | Giorgio Laguzzi | Ilya Sharankou | B. Löwe | Giorgio Laguzzi | Yurii Khomskii | Ilya Sharankou
[1] Saharon Shelah,et al. Can you take Solovay’s inaccessible away? , 1984 .
[2] Sy-David Friedman. Consistency of the Silver dichotomy in generalised Baire space , 2014 .
[3] Y. D. Khomskii,et al. Regularity Properties and Definability in the Real Number Continuum: Idealized forcing, polarized partitions, Hausdorff gaps and mad families in the projective hierarchy , 2007 .
[4] Jan van Eijck,et al. Group actions and countable models , 2016 .
[5] Lorenzo Galeotti. A Candidate for the Generalised Real Line , 2016, CiE.
[6] Avner Landver,et al. Baire numbers, uncountable Cohen sets and perfect-set forcing , 1992, Journal of Symbolic Logic.
[7] Sy-David Friedman,et al. Analytic equivalence relations and bi-embeddability , 2011, The Journal of Symbolic Logic.
[8] Haim Judah,et al. Set Theory: On the Structure of the Real Line , 1995 .
[9] Philipp Lücke,et al. Locally $\Sigma _{1}$-definable well-orders of ${\rm H}(\kappa ^+)$ , 2014 .
[10] Saharon Shelah. The combinatorics of reasonable ultrafilters , 2004 .
[11] Andreas Blass,et al. Combinatorial Cardinal Characteristics of the Continuum , 2010 .
[12] Jouko Väänänen,et al. Trees and π11-subsets of ω1ω , 1993 .
[13] Marcia J. Groszek,et al. A basis theorem for perfect sets , 1998, Bull. Symb. Log..
[14] Matteo Viale. Category forcings, MM^{+++}, and generic absoluteness for the theory of strong forcing axioms , 2013 .
[15] Moti Gitik,et al. On the splitting number at Regular Cardinals , 2015, J. Symb. Log..
[16] Jörg Brendle,et al. Solovay-type characterizations for forcing-algebras , 1997, Journal of Symbolic Logic.
[17] Philipp Schlicht,et al. PERFECT SUBSETS OF GENERALIZED BAIRE SPACES AND LONG GAMES , 2017, The Journal of Symbolic Logic.
[18] Philipp Schlicht,et al. The Hurewicz dichotomy for generalized Baire spaces , 2015, 1506.03364.
[19] Jorg Brendle,et al. Strolling through paradise , 2007 .
[20] J. Conway. On Numbers and Games , 1976 .
[21] Tapani Hyttinen,et al. A Borel-reducibility Counterpart of Shelah's Main Gap Theorem , 2016 .
[22] S. Shelah,et al. Cofinality spectrum theorems in model theory, set theory and general topology , 2012, 1208.5424.
[23] Philipp Schlicht,et al. Generalized Choquet spaces , 2016 .
[24] Saharon Shelah,et al. Two inequalities between cardinal invariants , 2015 .
[25] Philipp Schlicht,et al. Continuous images of closed sets in generalized Baire spaces , 2015 .
[26] Sy-David Friedman,et al. A null ideal for inaccessibles , 2017, Arch. Math. Log..
[27] Jouko Väänänen,et al. Trees and -subsets of ω1 ω 1 , 1993 .
[28] Andrew D. Brooke-Taylor,et al. A variant proof of Con(b , 2014 .
[29] Saharon Shelah,et al. Cardinal invariants Bk and Tk , 2002 .
[30] ANDREW D. BROOKE-TAYLOR. SMALL u κ AND LARGE 2 κ FOR SUPERCOMPACT κ , 2012 .
[31] Saharon Shelah,et al. Reasonable Ultrafilters, Again , 2011, Notre Dame J. Formal Log..
[32] David Asperó,et al. Definable well-orders of H(ω2) and GCH , 2012, J. Symb. Log..
[33] Sy-David Friedman,et al. Condensation and large cardinals , 2011 .
[34] Tapani Hyttinen,et al. Borel* Sets in the Generalised Baire Space , 2012 .
[35] Luca Motto Ros. The descriptive set-theoretical complexity of the embeddability relation on models of large size , 2013, Ann. Pure Appl. Log..
[36] F. Stephan,et al. Set theory , 2018, Mathematical Statistics with Applications in R.
[37] John R. Steel,et al. A proof of projective determinacy , 1989 .
[38] Saharon Shelah,et al. Cardinal Invariants Above the Continuum , 1995, Ann. Pure Appl. Log..
[39] Sy-David Friedman,et al. Cardinal characteristics at κ in a small u(κ) model , 2015, Ann. Pure Appl. Log..
[40] R. Vaught. Invariant sets in topology and logic , 1974 .
[41] Jouko A. Väänänen,et al. Boolean-Valued Second-Order Logic , 2015, Notre Dame J. Formal Log..
[42] ANDREAS BLASS,et al. MAD FAMILIES AND THEIR NEIGHBORS , 2006 .
[43] A. Louveau,et al. Complete analytic equivalence relations , 2005 .
[44] H. H. Hung,et al. Spaces homeomorphic to $\left( {2^\alpha } \right)_\alpha$ , 1973 .
[45] David Asperó,et al. Large cardinals and locally defined well-orders of the universe , 2009, Ann. Pure Appl. Log..
[46] Sy-David Friedman,et al. Generalized Descriptive Set Theory and Classification Theory , 2012, 1207.4311.
[47] Menachem Magidor,et al. Universally Baire Sets of Reals , 1992 .
[48] Saharon Shelah,et al. On strong measure zero subsets of $^{κ}2$ , 2001 .
[49] Daisuke Ikegami. Forcing absoluteness and regularity properties , 2010, Ann. Pure Appl. Log..
[50] Sy-David Friedman,et al. Regularity properties on the generalized reals , 2016, Ann. Pure Appl. Log..
[51] W. Wistar Comfort,et al. Spaces Homeomorphic to (2α)α , 1974 .
[52] Aapo Halko. Negligible subsets of the generalized Baire space ω_1^ω_1 , 1996 .
[53] ON CON(dλ> COVλ(MEAGRE)) , .
[54] Saharon Shelah,et al. CARDINAL INVARIANTS bκ AND tκ , 2000 .
[55] Saharon Shelah,et al. A parallel to the null ideal for inaccessible $$\lambda $$λ: Part I , 2012, Arch. Math. Log..
[56] Lorenzo Galeotti. Computable Analysis Over the Generalized Baire Space , 2015 .
[57] Sy-David Friedman,et al. On Borel Reducibility in Generalised Baire Space , 2014 .
[58] Jindrich Zapletal,et al. Splitting number at uncountable cardinals , 1997, Journal of Symbolic Logic.
[59] Jörg Brendle,et al. Silver Measurability and its relation to other regularity properties , 2005, Mathematical Proceedings of the Cambridge Philosophical Society.
[60] Benjamin Naumann,et al. Classical Descriptive Set Theory , 2016 .
[61] Philipp Lücke,et al. Simplest possible locally definable well-orders , 2017 .
[62] Giorgio Laguzzi. Generalized Silver and Miller measurability , 2015, Math. Log. Q..
[63] Matthew Foreman. Review: Donald A. Martin, John R. Steel, Projective Determinacy; W. Hugh Woodin, Supercompact Cardinals, Sets of Reals, and Weakly Homogeneous Trees; Donald A. Martin, John R. Steel, A Proof of Projective Determinacy , 1992 .
[64] Saharon Shelah,et al. The ultrafilter number for singular cardinals , 2012, 1201.1713.