A comparison of two models of electrodes for ECT simulations

This paper discusses some numerical aspects of the simulation of electroconvulsive therapy (ECT). A realistic finite-element model of the human head is used to discuss two approaches to modeling the electrodes applied to human head skin. The first approach models the electrode by a mixed-boundary condition, while the second one uses additional subdomain imitating electrode-to-skin contact for that purpose [three-dimensional (3-D) model]. An algorithm of grid modification used to add an external subdomain modeling the electrode contact resistance is presented. The authors examine the influence of the electrode model on the convergence speed of the iterative solver. The authors state that the 3-D model is better conditioned, and, thus, it converges faster