Sparse Coding and Lateral Inhibition Arising from Balanced and Unbalanced Dendrodendritic Excitation and Inhibition

The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral–granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb.

[1]  G. Shepherd,et al.  Computer simulation of a dendrodendritic synaptic circuit for self- and lateral-inhibition in the olfactory bulb , 1979, Brain Research.

[2]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.

[3]  Jennifer D Whitesell,et al.  Interglomerular Lateral Inhibition Targeted on External Tufted Cells in the Olfactory Bulb , 2013, The Journal of Neuroscience.

[4]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[5]  E. Audinat,et al.  Action Potential Propagation in Dendrites of Rat Mitral Cells In Vivo , 2003, The Journal of Neuroscience.

[6]  M. Brecht,et al.  Sparse and powerful cortical spikes , 2010, Current Opinion in Neurobiology.

[7]  S. Firestein,et al.  A Lateral Look at Olfactory Bulb Lateral Inhibition , 2008, Neuron.

[8]  A. Reyes,et al.  Synaptic mechanisms underlying auditory processing , 2006, Current Opinion in Neurobiology.

[9]  Brice Bathellier,et al.  GABAergic inhibition at dendrodendritic synapses tunes γ oscillations in the olfactory bulb , 2007, Proceedings of the National Academy of Sciences.

[10]  Andreas T. Schaefer,et al.  Synaptic Inhibition in the Olfactory Bulb Accelerates Odor Discrimination in Mice , 2010, Neuron.

[11]  C. Linster,et al.  Odor perception and olfactory bulb plasticity in adult mammals. , 2009, Journal of Neurophysiology.

[12]  Vikrant Kapoor,et al.  Activity-dependent gating of lateral inhibition in the mouse olfactory bulb , 2008, Nature Neuroscience.

[13]  R. Araneda,et al.  Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination , 2013, Proceedings of the National Academy of Sciences.

[14]  Brent Doiron,et al.  Timescale-dependent shaping of correlation by olfactory bulb lateral inhibition , 2011, Proceedings of the National Academy of Sciences.

[15]  Jeffry S. Isaacson,et al.  GABAB Receptors Inhibit Dendrodendritic Transmission in the Rat Olfactory Bulb , 2003, The Journal of Neuroscience.

[16]  Gordon M. Shepherd,et al.  Dendritic action potentials connect distributed dendrodendritic microcircuits , 2008, Journal of Computational Neuroscience.

[17]  Alan Gelperin,et al.  Sparse Odor Coding in Awake Behaving Mice , 2006, The Journal of Neuroscience.

[18]  K. Mori,et al.  Odor-induced persistent discharge of mitral cells in the mouse olfactory bulb. , 2009, Journal of neurophysiology.

[19]  Upinder S Bhalla,et al.  Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse , 2010, Nature Neuroscience.

[20]  G M Shepherd,et al.  Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. , 1966, Experimental neurology.

[21]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[22]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[23]  Wei R. Chen,et al.  The olfactory granule cell: From classical enigma to central role in olfactory processing , 2007, Brain Research Reviews.

[24]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[25]  P B Brown,et al.  Two-point discriminability: relation to properties of the somatosensory system. , 1984, Somatosensory research.

[26]  Nathaniel N. Urban,et al.  Lateral inhibition in the olfactory bulb and in olfaction , 2002, Physiology & Behavior.

[27]  B Sakmann,et al.  Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[29]  Richard Granger,et al.  Simulated dendritic spines influence reciprocal synaptic strengths and lateral inhibition in the olfactory bulb , 1993, Brain Research.

[30]  Lawrence C Katz,et al.  Sparse and Selective Odor Coding by Mitral/Tufted Neurons in the Main Olfactory Bulb , 2007, The Journal of Neuroscience.

[31]  Gordon M Shepherd,et al.  Viral tracing identifies distributed columnar organization in the olfactory bulb , 2006, Proceedings of the National Academy of Sciences.

[32]  Wei R. Chen,et al.  Dynamic Gating of Spike Propagation in the Mitral Cell Lateral Dendrites , 2002, Neuron.

[33]  Kei M. Igarashi,et al.  Maps of odorant molecular features in the Mammalian olfactory bulb. , 2006, Physiological reviews.

[34]  Lawrence C. Katz,et al.  Representation of Natural Stimuli in the Rodent Main Olfactory Bulb , 2006, Neuron.

[35]  K. Svoboda,et al.  Mechanisms of Lateral Inhibition in the Olfactory Bulb: Efficiency and Modulation of Spike-Evoked Calcium Influx into Granule Cells , 2003, The Journal of Neuroscience.

[36]  Gordon M. Shepherd,et al.  Learning Mechanism for Column Formation in the Olfactory Bulb , 2007, Frontiers in integrative neuroscience.

[37]  M L Hines,et al.  Neuron: A Tool for Neuroscientists , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[38]  Michael L. Hines,et al.  Functional Roles of Distributed Synaptic Clusters in the Mitral–Granule Cell Network of the Olfactory Bulb , 2010, Front. Integr. Neurosci..

[39]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[40]  Jianfeng Feng,et al.  Structure of Lateral Inhibition in an Olfactory Bulb Model , 1999, IWANN.

[41]  J. Isaacson,et al.  GABA(B) receptors inhibit dendrodendritic transmission in the rat olfactory bulb. , 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[43]  S. Nakanishi,et al.  Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[44]  P. Stanton,et al.  LTD, LTP, and the sliding threshold for long‐term synaptic plasticity , 1996, Hippocampus.

[45]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  A. Koulakov,et al.  Sparse Incomplete Representations: A Potential Role of Olfactory Granule Cells , 2011, Neuron.

[47]  Michael L. Hines,et al.  Sparse Distributed Representation of Odors in a Large-scale Olfactory Bulb Circuit , 2013, PLoS Comput. Biol..

[48]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[49]  Matthew C Smear,et al.  Perception of sniff phase in mouse olfaction , 2011, Nature.

[50]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[51]  G M Shepherd,et al.  Blockade of synaptic inhibition reveals long-lasting synaptic excitation in isolated turtle olfactory bulb. , 1981, Journal of neurophysiology.

[52]  M. Migliore,et al.  Effects of increasing CREB‐dependent transcription on the storage and recall processes in a hippocampal CA1 microcircuit , 2014, Hippocampus.

[53]  Upinder Singh Bhalla,et al.  Odor representations in the mammalian olfactory bulb , 2010, Wiley interdisciplinary reviews. Systems biology and medicine.

[54]  J Bischofberger,et al.  Action potential propagation into the presynaptic dendrites of rat mitral cells , 1997, The Journal of physiology.

[55]  J. Isaacson,et al.  Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit , 2005, Nature Neuroscience.

[56]  G. Shepherd,et al.  Functional organization of rat olfactory bulb analysed by the 2‐deoxyglucose method , 1979, The Journal of comparative neurology.

[57]  Edmund T. Rolls,et al.  Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex , 2007, Biological Cybernetics.

[58]  M. Wachowiak,et al.  Effect of Sniffing on the Temporal Structure of Mitral/Tufted Cell Output from the Olfactory Bulb , 2011, The Journal of Neuroscience.

[59]  Terrence J. Sejnowski,et al.  Synaptic Learning Rules and Sparse Coding in a Model Sensory System , 2008, PLoS Comput. Biol..

[60]  J. Isaacson,et al.  Odor Representations in Olfactory Cortex: “Sparse” Coding, Global Inhibition, and Oscillations , 2009, Neuron.

[61]  Mechanism of lateral inhibition in eye of Limulus. , 1958, Journal of neurophysiology.

[62]  M. Wachowiak All in a Sniff: Olfaction as a Model for Active Sensing , 2011, Neuron.

[63]  Antoniu L. Fantana,et al.  Rat Olfactory Bulb Mitral Cells Receive Sparse Glomerular Inputs , 2008, Neuron.

[64]  Y. Kawaguchi,et al.  Cortical Inhibitory Cell Types Differentially Form Intralaminar and Interlaminar Subnetworks withExcitatory Neurons , 2009, The Journal of Neuroscience.

[65]  Michele Migliore,et al.  Role of an A-Type K+ Conductance in the Back-Propagation of Action Potentials in the Dendrites of Hippocampal Pyramidal Neurons , 1999, Journal of Computational Neuroscience.

[66]  T. Komiyama,et al.  Dynamic Sensory Representations in the Olfactory Bulb: Modulation by Wakefulness and Experience , 2012, Neuron.

[67]  Gongyu Y. Shen,et al.  Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. , 1999, Journal of neurophysiology.

[68]  Matthew C Smear,et al.  Precise olfactory responses tile the sniff cycle , 2011, Nature Neuroscience.

[69]  Thomas A. Cleland,et al.  On-Center/Inhibitory-Surround Decorrelation via Intraglomerular Inhibition in the Olfactory Bulb Glomerular Layer , 2012, Front. Integr. Neurosci..