On the Adaptive Selection of the Parameter in Stabilized Finite Element Approximations
暂无分享,去创建一个
Mark Ainsworth | Gabriel R. Barrenechea | Alejandro Allendes | Richard Rankin | M. Ainsworth | Richard Rankin | G. Barrenechea | A. Allendes
[1] David J. Silvester,et al. ANALYSIS OF LOCALLY STABILIZED MIXED FINITE-ELEMENT METHODS FOR THE STOKES PROBLEM , 1992 .
[2] Frédéric Valentin,et al. Consistent Local Projection Stabilized Finite Element Methods , 2010, SIAM J. Numer. Anal..
[3] V. John,et al. A posteriori optimization of parameters in stabilized methods for convection-diffusion problems - Part II , 2011, J. Comput. Appl. Math..
[4] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[5] G. Stoyan. Towards discrete velte decompositions and narrow bounds for inf-sup constants , 1999 .
[6] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[7] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[8] M. Stynes,et al. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .
[9] Franco Brezzi,et al. Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .
[10] F. Brezzi,et al. On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .
[11] Mark Ainsworth,et al. Computable error bounds for nonconforming Fortin–Soulie finite element approximation of the Stokes problem , 2012 .
[12] F. Hecht,et al. A POSTERIORI ANALYSIS OF A PENALTY METHOD AND APPLICATION TO THE STOKES PROBLEM , 2003 .
[13] Jim Douglas,et al. An absolutely stabilized finite element method for the stokes problem , 1989 .
[14] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[15] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[16] Michel Fortin,et al. Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .
[17] Frédéric Valentin,et al. Stabilized Finite Element Methods Based on Multiscale Enrichment for the Stokes Problem , 2006, SIAM J. Numer. Anal..
[18] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[19] Kwang-Yeon Kim. Flux reconstruction for the P2 nonconforming finite element method with application to a posteriori error estimation , 2012 .
[20] Graham F. Carey,et al. Penalty approximation of stokes flow , 1982 .
[21] Clark R. Dohrmann,et al. Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..
[22] C. Dohrmann,et al. A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .
[23] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[24] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[25] L. D. Marini,et al. A Priori Error Analysis of Residual-Free Bubbles for Advection-Diffusion Problems , 1999 .
[26] Willy Dörfler,et al. Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow , 2005, Math. Comput..
[27] David J. Silvester. Optimal low order finite element methods for incompressible flow , 1994 .
[28] Katya Scheinberg,et al. Global Convergence of General Derivative-Free Trust-Region Algorithms to First- and Second-Order Critical Points , 2009, SIAM J. Optim..
[29] H. Langtangen,et al. Mixed Finite Elements , 2003 .
[30] Katya Scheinberg,et al. Geometry of interpolation sets in derivative free optimization , 2007, Math. Program..
[31] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[32] Pavel B. Bochev,et al. A Taxonomy of Consistently Stabilized Finite Element Methods for the Stokes Problem , 2004, SIAM J. Sci. Comput..
[33] Thomas J. R. Hughes,et al. The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .
[34] Katya Scheinberg,et al. On the convergence of derivative-free methods for unconstrained optimization , 1997 .
[35] Martin Vohralík,et al. A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.