Librational response of Enceladus

Physical librations could significantly contribute to Enceladus' geophysics through their influence on tidal stress. Therefore it is important to determine their behavior and the present paper is devoted to estimating Enceladus' libration in longitude. In a rotational model of Enceladus with no global ocean, we introduce the main perturbative terms of its orbital longitude and the tidal coupling. The main librations of Enceladus are related to indirect perturbations of the orbit of Enceladus by Dione (11 years and 3.7 years periods) with amplitudes of 933.4″ (1.14 km) and 676.6″ (827 m), respectively. These amplitudes are almost independent of the body's triaxiality. The third main libration is due to the direct gravitational attraction of Saturn and its period is equal to that of the mean anomaly of Enceladus with an amplitude between 93.1″ and 113.5″ (i.e., 112 and 139 m), depending on triaxiality. These amplitudes are consistent with the upper bound of 1.5° (6.6 km) inferred from observations with the Cassini‐Huygens spacecraft. The nonrigid body libration amplitudes due to tidal coupling are negligible. Nevertheless, tidal dissipation induces a small phase shift up to 0.57° corresponding to a displacement of Enceladus' figure of 1 m along the moon's equator at the mean anomaly period.

[1]  V. Lainey,et al.  The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model , 2011 .

[2]  P. Helfenstein,et al.  Geological implications of a physical libration on Enceladus , 2009 .

[3]  James G. Williams,et al.  Tidal torques: a critical review of some techniques , 2008, 0803.3299.

[4]  Nathan J. Strange,et al.  Cycler Trajectories in Planetary Moon Systems , 2009 .

[5]  Renald Brenner,et al.  Elastoviscoplastic micromechanical modeling of the transient creep of ice , 2008 .

[6]  Gabriel Tobie,et al.  Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus , 2008 .

[7]  Diana Smith Viscous relaxation of craters on Enceladus , 2008 .

[8]  V. Lainey,et al.  Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution , 2007, 0709.1995.

[9]  J. H. Roberts,et al.  Long-Term Stability of a Subsurface Ocean on Enceladus , 2007 .

[10]  C. Sotin,et al.  Iapetus’ geophysics : rotation rate, shape, and equatorial ridge , 2007 .

[11]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[12]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[13]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[14]  J. Wisdom Spin-Orbit Secondary Resonance Dynamics of Enceladus , 2004 .

[15]  B. Bills,et al.  A Solar System Survey of Forced Librations in Longitude , 2003 .

[16]  J. T. Ratcliff,et al.  Lunar rotational dissipation in solid body and molten core , 2001 .

[17]  R. Cooper,et al.  Low-frequency shear attenuation in polycrystalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology , 1998 .

[18]  E. M. Standish,et al.  JPL's On-Line Solar System Data Service , 1996 .

[19]  L. Duriez,et al.  TASS1.6: Ephemerides of the major Saturnian satellites. , 1995 .

[20]  J. Laskar Secular evolution of the solar system over 10 million years , 1988 .

[21]  Donald H. Eckhardt,et al.  Theory of the libration of the moon , 1981 .

[22]  J. Anderson,et al.  Possible flyby measurements of Galilean satellite interior structure , 1978 .

[23]  T. Teichmann,et al.  Fundamentals of celestial mechanics , 1963 .

[24]  E. N. da C. Andrade,et al.  Über das zähe Fließen in Metallen und verwandte Erscheinungen = On the viscous flow in metals, and allied phenomena , 1910 .