Strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition

We report the strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition and demonstrate that this bioorthogonal reaction enables site-specific protein labelling.

[1]  Carsten Schultz,et al.  Amino acids for Diels-Alder reactions in living cells. , 2012, Angewandte Chemie.

[2]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[3]  Wenjiao Song,et al.  Selective functionalization of a genetically encoded alkene-containing protein via "photoclick chemistry" in bacterial cells. , 2008, Journal of the American Chemical Society.

[4]  Christopher D. Spicer,et al.  Palladium-mediated cell-surface labeling. , 2012, Journal of the American Chemical Society.

[5]  B. G. Davis,et al.  Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. , 2008, Journal of the American Chemical Society.

[6]  C. Bertozzi,et al.  A "traceless" Staudinger ligation for the chemoselective synthesis of amide bonds. , 2000, Organic letters.

[7]  Michael T. Taylor,et al.  Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.

[8]  J. Chin,et al.  Bioorthogonal reactions for labeling proteins. , 2014, ACS chemical biology.

[9]  M. Wolfert,et al.  Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. , 2008, Angewandte Chemie.

[10]  M. Wolfert,et al.  Protein Modification by Strain-Promoted Alkyne–Nitrone Cycloaddition , 2010, Angewandte Chemie.

[11]  J. Chin,et al.  Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. , 2009, Journal of the American Chemical Society.

[12]  M. Finn,et al.  Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. , 2010, Journal of the American Chemical Society.

[13]  Craig S. McKay,et al.  Strain-promoted cycloadditions of cyclic nitrones with cyclooctynes for labeling human cancer cells. , 2011, Chemical communications.

[14]  C. Créminon,et al.  Discovery of chemoselective and biocompatible reactions using a high-throughput immunoassay screening. , 2013, Angewandte Chemie.

[15]  R. Riguera,et al.  Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. , 2011, Angewandte Chemie.

[16]  Jianghong Rao,et al.  A biocompatible condensation reaction for controlled assembly of nanostructures in live cells , 2010, Nature chemistry.

[17]  T. Muir,et al.  Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. , 2011, Journal of the American Chemical Society.

[18]  P. Friedl,et al.  Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells , 2010, Angewandte Chemie.

[19]  P. Schultz,et al.  Selective Staudinger Modification of Proteins Containing p‐Azidophenylalanine , 2005, Chembiochem : a European journal of chemical biology.

[20]  Michael M. Madden,et al.  A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. , 2008, Angewandte Chemie.

[21]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[22]  R. Huisgen 1,3-Dipolar Cycloadditions. Past and Future† , 1963 .

[23]  B. G. Davis,et al.  Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection. , 2010, Journal of the American Chemical Society.

[24]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[25]  Qing Lin,et al.  Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.

[26]  Carolyn R Bertozzi,et al.  Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Rideout Self-assembling cytotoxins. , 1986, Science.

[28]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[29]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[30]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[31]  Scott T. Clarke,et al.  Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. , 2012, Angewandte Chemie.

[32]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[33]  B. G. Davis,et al.  A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling. , 2009, Journal of the American Chemical Society.

[34]  Qian Wang,et al.  Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[35]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[36]  N. Devaraj,et al.  Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. , 2012, Angewandte Chemie.

[37]  P. Schultz,et al.  A general and efficient method for the site-specific dual-labeling of proteins for single molecule fluorescence resonance energy transfer. , 2008, Journal of the American Chemical Society.

[38]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[39]  R. Schmidt,et al.  1,3‐Dipolar Additions of Sydnones to Alkynes. A New Route into the Pyrazole Series , 1962 .

[40]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[41]  Carolyn R. Bertozzi,et al.  Chemical remodelling of cell surfaces in living animals , 2004, Nature.

[42]  J. Campbell Earl,et al.  204. The action of acetic anhydride on N-nitrosophenylglycine and some of its derivatives , 1935 .

[43]  E. Lemke,et al.  Genetically Encoded Copper-Free Click Chemistry , 2011, Angewandte Chemie.