On Uncertainty Quantification of Lithium-ion Batteries: Application to an LiC$_6$/LiCoO$_2$ cell

In this work, a stochastic, physics-based model for Lithium-ion batteries (LIBs) is presented in order to study the effects of parametric model uncertainties on the cell capacity, voltage, and concentrations. To this end, the proposed uncertainty quantification (UQ) approach, based on sparse polynomial chaos expansions, relies on a small number of battery simulations. Within this UQ framework, the identification of most important uncertainty sources is achieved by performing a global sensitivity analysis via computing the so-called Sobol' indices. Such information aids in designing more efficient and targeted quality control procedures, which consequently may result in reducing the LIB production cost. An LiC$_6$/LiCoO$_2$ cell with 19 uncertain parameters discharged at 0.25C, 1C and 4C rates is considered to study the performance and accuracy of the proposed UQ approach. The results suggest that, for the considered cell, the battery discharge rate is a key factor affecting not only the performance variability of the cell, but also the determination of most important random inputs.

[1]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[2]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[3]  Sankaran Mahadevan,et al.  Uncertainty Quantification for Decision-Making in Engineered Systems , 2013 .

[4]  Brandon A. Jones,et al.  Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions , 2015 .

[5]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[6]  Shriram Santhanagopalan,et al.  Quantifying Cell-to-Cell Variations in Lithium Ion Batteries , 2012 .

[7]  Xiu Yang,et al.  Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..

[8]  John N. Harb,et al.  Modeling of Particle-Particle Interactions in Porous Cathodes for Lithium-Ion Batteries , 2007 .

[9]  Erratum: Nondestructive Reconstruction and Analysis of Solid Oxide Fuel Cell Anodes Using X-Ray Computed Tomography at Sub-50 nm Resolution [ J. Electrochem. Soc. , 155 , B504 (2008) ] , 2010 .

[10]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[11]  Ann Marie Sastry,et al.  Selection of Conductive Additives in Li-Ion Battery Cathodes A Numerical Study , 2007 .

[12]  Shriram Santhanagopalan,et al.  Modeling Parametric Uncertainty Using Polynomial Chaos Theory , 2007 .

[13]  Indrajeet Vilasrao Thorat Understanding Performance--Limiting Mechanisms in Li-ION Batteries for High-Rate Applications , 2009 .

[14]  Praveen Chandrashekarappa,et al.  Uncertainty Quantification for Robust Design , 2013 .

[15]  S. Moon,et al.  Intercalation of lithium ions into graphite electrodes studied by AC impedance measurements , 1999 .

[16]  Jian Xie,et al.  Orientation dependence of Li-ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering , 2008 .

[17]  Jan N. Reimers,et al.  Simulating High Current Discharges of Power Optimized Li-Ion Cells , 2013 .

[18]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[19]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[20]  R. Spotnitz,et al.  A Mathematical Model for Intercalation Electrode Behavior I. Effect of Particle‐Size Distribution on Discharge Capacity , 1998 .

[21]  Omar M. Knio,et al.  A stochastic particle-mesh scheme for uncertainty propagation in vortical flows , 2007, J. Comput. Phys..

[22]  R. Bratvold,et al.  From Uncertainty Quantification to Decision Making in the Oil and Gas Industry , 2008 .

[23]  Ralph E. White,et al.  Analytical Expression for the Impedance Response for a Lithium-Ion Cell , 2008 .

[24]  B. Yan,et al.  Carbon-coated LiCrTiO4 electrode material promoting phase transition to reduce asymmetric polarization for lithium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[25]  C. Chou,et al.  Preparation of Graphite/Nano-Powder Composite Particles and Applicability as Carbon Anode Material in a Lithium Ion Battery , 2008 .

[26]  Kai Goebel,et al.  Uncertainty Quantification in Remaining Useful Life of Aerospace Components using State Space Models and Inverse FORM , 2013 .

[27]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[28]  M. Doeff,et al.  Transport Property and Raman Spectroscopic Studies of the Polymer Electrolyte System P ( EO ) n ‐ NaTFSI , 1998 .

[29]  Chaoyang Wang,et al.  Micro‐Macroscopic Coupled Modeling of Batteries and Fuel Cells I. Model Development , 1998 .

[30]  Richard D. Braatz,et al.  Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models , 2011 .

[31]  Bugga V. Ratnakumar,et al.  Li ion batteries for aerospace applications , 2001 .

[32]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[33]  W. Shyy,et al.  Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance , 2010 .

[34]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[35]  M. Eldred Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design , 2009 .

[36]  Chao-Yang Wang,et al.  Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling , 2002 .

[37]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[38]  H. Fathy,et al.  Reduction of an Electrochemistry-Based Li-Ion Battery Model via Quasi-Linearization and Padé Approximation , 2011 .

[39]  Wilson K. S. Chiu,et al.  Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution , 2008 .

[40]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[41]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[42]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[43]  Liquan Chen,et al.  Determination of Chemical Diffusion Coefficient of Lithium Ion in Graphitized Mesocarbon Microbeads with Potential Relaxation Technique , 2001 .

[44]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[45]  Chaoyang Wang,et al.  Model Order Reduction of 1D Diffusion Systems Via Residue Grouping , 2008 .

[46]  P. Shearing,et al.  3D reconstruction of SOFC anodes using a focused ion beam lift-out technique , 2009 .

[47]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[48]  Marc Doyle,et al.  Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs , 2003 .

[49]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[50]  Jiajun Chen,et al.  Recent Progress in Advanced Materials for Lithium Ion Batteries , 2013, Materials.

[51]  Sankaran Mahadevan,et al.  Uncertainty analysis for computer simulations through validation and calibration , 2008 .

[52]  Jan N. Reimers,et al.  Algorithmic Improvements and PDE Decoupling, for the Simulation of Porous Electrode Cells , 2013 .

[53]  Doron Aurbach,et al.  Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes , 1997 .

[54]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[55]  W. Shyy,et al.  Optimization of a Single Lithium-Ion Battery Cell with a Gradient-Based Algorithm , 2013 .

[56]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[57]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[58]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[59]  A. Nyman An Experimental and Theoretical Study of the Mass Transport in Lithium-Ion Battery Electrolytes , 2011 .

[60]  Yun-Sung Lee,et al.  LiMnPO4 - A next generation cathode material for lithium-ion batteries , 2013 .

[61]  V. Subramanian,et al.  Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions , 2009 .

[62]  Yavor Vutov,et al.  Finite Volume Discretization of Equations Describing Nonlinear Diffusion in Li-Ion Batteries , 2010, NMA.

[63]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[65]  C. M. Li,et al.  Template-free bottom-up synthesis of yolk-shell vanadium oxide as high performance cathode for lithium ion batteries. , 2013, Chemical communications.

[66]  Rudolf Holze Lithium batteries: science and technology, Gholam-Abbas Nazri and Gianfranco Pistoa (eds) , 2005 .

[67]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[68]  Karen E. Thomas,et al.  Mathematical Modeling of Lithium Batteries , 2002 .

[69]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[70]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[71]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[72]  L. Mathelin,et al.  A Stochastic Collocation Algorithm for Uncertainty Analysis , 2003 .

[73]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[74]  Alireza Doostan,et al.  Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.

[75]  Marin Kobilarov,et al.  Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems , 2011, Annu. Rev. Control..

[76]  Kyle N. Grew,et al.  Nondestructive Reconstruction and Analysis of Solid Oxide Fuel Cell Anodes using X-ray Computed Tomography at sub-50 nm Resolution , 2008 .

[77]  P. Shearing,et al.  Particle Size Polydispersity in Li-Ion Batteries , 2014 .

[78]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[79]  Joaquim R. R. A. Martins,et al.  A Surrogate-Based Multi-Scale Model for Mass Transport and Electrochemical Kinetics in Lithium-Ion Battery Electrodes , 2014 .

[80]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[81]  Ralph E. White,et al.  Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations , 2009 .

[82]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[83]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[84]  J. Jorné,et al.  Measurement of Tortuosity and Porosity of Porous Battery Electrodes , 2014 .

[85]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[86]  H. Wiemhöfer,et al.  Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study , 2011 .

[87]  G. Iaccarino,et al.  SPARSE MULTIRESOLUTION REGRESSION FOR UNCERTAINTY PROPAGATION , 2014 .

[88]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[89]  D. Bertsimas,et al.  Robust and Data-Driven Optimization: Modern Decision-Making Under Uncertainty , 2006 .

[90]  John Newman,et al.  Electrochemical Systems, 3rd Edition , 2004 .

[91]  J. Tarascon,et al.  In situ measurements of Li ion battery electrode material conductivity : Application to LixCoO2 and conversion reactions , 2007 .

[92]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[93]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[94]  J. Reimers Accurate and Efficient Treatment of Foil Currents in a Spiral Wound Li-Ion Cell , 2014 .

[95]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[96]  K. Maute,et al.  Multiscale design optimization of lithium ion batteries using adjoint sensitivity analysis , 2012 .

[97]  Naehyuck Chang,et al.  A statistical model of cell-to-cell variation in Li-ion batteries for system-level design , 2013, International Symposium on Low Power Electronics and Design (ISLPED).