Approximate ordinary differential equations for the optimal exercise boundaries of American put and call options

We revisit the American put and call option valuation problems. We derive analytical formulas for the option prices and approximate ordinary differential equations for the optimal exercise boundaries. Numerical simulations yield accurate option prices and comparable computational speeds when benchmarked against the binomial method for calculating option prices. Our approach is based on the Mellin transform and an adaptation of the Kármán–Pohlausen technique for boundary layers in fluid mechanics.

[1]  Y. Kwok Mathematical models of financial derivatives , 2008 .

[2]  Juan Carlos Cortés,et al.  A new direct method for solving the Black-Scholes equation , 2005, Appl. Math. Lett..

[3]  Marti G. Subrahmanyam,et al.  Pricing and Hedging American Options: A Recursive Integration Method , 1995 .

[4]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[5]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[6]  Eduardo S. Schwartz The valuation of warrants: Implementing a new approach , 1977 .

[7]  H. Johnson An Analytic Approximation for the American Put Price , 1983, Journal of Financial and Quantitative Analysis.

[8]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[9]  Song‐Ping Zhu On Various Quantitative Approaches For Pricing American Options , 2011 .

[10]  I. Karatzas On the pricing of American options , 1988 .

[11]  P. Carr,et al.  ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS , 1992 .

[12]  I. Kim The Analytic Valuation of American Options , 1990 .

[13]  Lucas Jódar,et al.  Numerical solution of modified Black-Scholes equation pricing stock options with discrete dividend , 2006, Math. Comput. Model..

[14]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[15]  Eduardo S. Schwartz,et al.  Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis , 1977 .

[16]  P. Wilmott,et al.  Some mathematical results in the pricing of American options , 1993, European Journal of Applied Mathematics.

[17]  H. P. Jr. Mackean,et al.  Appendix : A free boundary problem for the heat equation arising from a problem in mathematical economics , 1965 .

[18]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[19]  James Jackson,et al.  American-Style Derivatives: Valuation and Computation , 2009 .

[20]  Daniel Sevcovic,et al.  Analysis of the free boundary for the pricing of an American call option , 2001, European Journal of Applied Mathematics.

[21]  James A. Tilley Valuing American Options in a Path Simulation Model , 2002 .

[22]  C. Chiarella,et al.  American Call Options Under Jump‐Diffusion Processes – A Fourier Transform Approach , 2009 .

[23]  Radha Panini,et al.  Option pricing with Mellin transnforms , 2004, Math. Comput. Model..

[24]  Lucas Jódar,et al.  Explicit solution of Black-Scholes option pricing mathematical models with an impulsive payoff function , 2007, Math. Comput. Model..

[25]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[26]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[27]  Rogemar Mamon,et al.  AN APPLICATION OF MELLIN TRANSFORM TECHNIQUES TO A BLACK–SCHOLES EQUATION PROBLEM , 2007 .

[28]  C. Chiarella,et al.  A Fourier Transform Analysis of the American Call Option on Assets Driven by Jump-Diffusion Processes , 2006 .

[29]  S. Jacka Optimal Stopping and the American Put , 1991 .