Atomistic aspects of fracture

Any fracture process ultimately involves the rupture of atomic bonds. Processes at the atomic scale therefore critically influence the toughness and overall fracture behavior of materials. Atomistic simulation methods including large-scale molecular dynamics simulations with classical potentials, density functional theory calculations and advanced concurrent multiscale methods have led to new insights e.g. on the role of bond trapping, dynamic effects, crack-microstructure interactions and chemical aspects on the fracture toughness and crack propagation patterns in metals and ceramics. This review focuses on atomistic aspects of fracture in crystalline materials where significant advances have been achieved over the last ten years and provides an outlook on future perspectives for atomistic modelling of fracture.

[1]  E. R. Margine,et al.  Development of orthogonal tight-binding models for Ti-C and Ti-N systems , 2011 .

[2]  Christian Elsässer,et al.  Bond-Order Potential for Simulations of Extended Defects in Tungsten , 2007 .

[3]  R. Danzer,et al.  Fracture toughness of silicon nitride balls via thermal shock , 2017 .

[4]  A. Machová,et al.  Growth of a brittle crack (0 0 1) in 3D bcc iron crystal with a Cu nano-particle , 2014 .

[5]  Markus J Buehler,et al.  Threshold crack speed controls dynamical fracture of silicon single crystals. , 2007, Physical review letters.

[6]  K. Yokogawa,et al.  Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron , 2003 .

[7]  William A. Curtin,et al.  Crack interaction with microstructure , 2007 .

[8]  Johannes J. Möller,et al.  FE2AT—finite element informed atomistic simulations , 2013 .

[9]  J. Connally,et al.  Slow Crack Growth in Single-Crystal Silicon , 1992, Science.

[10]  C. Thaulow,et al.  Atomistic modeling of penny-shaped and through-thickness cracks in bcc iron , 2012 .

[11]  Fucheng Zhang,et al.  Atomic-scale simulation of α/γ-iron phase boundary affecting crack propagation using molecular dynamics method , 2011 .

[12]  Johannes J. Möller,et al.  Comparative study of embedded atom potentials for atomistic simulations of fracture in α-iron , 2014 .

[13]  Matteo Ciccotti,et al.  Measuring nanoscale stress intensity factors with an atomic force microscope , 2010, 1002.1877.

[14]  Johannes J. Möller,et al.  On the influence of crack front curvature on the fracture behavior of nanoscale cracks , 2015 .

[15]  Markus J Buehler,et al.  Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. , 2006, Physical review letters.

[16]  N. Stoloff Liquid Metal Embrittlement , 1968 .

[17]  C. F. Old,et al.  Liquid metal embrittlement , 1979 .

[18]  Rajiv K. Kalia,et al.  Environmental effects of H 2 O on fracture initiation in silicon : A hybrid electronic-density-functional Õ molecular-dynamics study , 2004 .

[19]  J. Kermode,et al.  Dissociative chemisorption of O2 inducing stress corrosion cracking in silicon crystals. , 2014, Physical Review Letters.

[20]  W. Curtin,et al.  Atomic mechanism and prediction of hydrogen embrittlement in iron. , 2013, Nature materials.

[21]  A. Argon,et al.  Brittle-to-ductile transitions in the fracture of silicon single crystals by dynamic crack arrest , 2001 .

[22]  Stephen W. Freiman,et al.  A molecular interpretation of stress corrosion in silica , 1982, Nature.

[23]  A. Hartmaier,et al.  Ab initio calculation of traction separation laws for a grain boundary in molybdenum with segregated C impurites , 2013 .

[24]  M. Buehler,et al.  Atomistic study of the effect of crack tip ledges on the nucleation of dislocations in silicon single crystals at elevated temperature , 2011 .

[25]  Peter Gumbsch,et al.  Atomistic Simulations of Dislocation — Crack Interaction , 2007, HiPC 2007.

[26]  S. Wiederhorn,et al.  Finite element analysis of a crack tip in silicate glass: No evidence for a plastic zone , 2008 .

[27]  Guy Makov,et al.  Ab initio based multiscale modelling for materials science , 2009 .

[28]  Peter Gumbsch,et al.  Atomistic Aspects of Brittle Fracture , 2000 .

[29]  R. Hennig,et al.  Ab initio prediction of environmental embrittlement at a crack tip in aluminum , 2012 .

[30]  Huajian Gao,et al.  Dynamical fracture instabilities due to local hyperelasticity at crack tips , 2006, Nature.

[31]  P. Gumbsch Brittle fracture and the brittle-to-ductile transition of tungsten , 2003 .

[32]  J. Kermode,et al.  Macroscopic scattering of cracks initiated at single impurity atoms , 2013, Nature Communications.

[33]  Andrea Benaglia,et al.  Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .

[34]  M. Buehler,et al.  Atomistic study of crack-tip cleavage to dislocation emission transition in silicon single crystals. , 2010, Physical review letters.

[35]  H. Mughrabi,et al.  Specific features and mechanisms of fatigue in the ultrahigh-cycle regime , 2006 .

[36]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[37]  D. Farkas,et al.  Atomistic simulations of the effects of segregated elements on grain-boundary fracture in body-centered-cubic Fe , 2005 .

[38]  J. Bach,et al.  Crack initiation mechanisms in AA6082 fatigued in the VHCF-regime , 2014 .

[39]  D. Warner,et al.  Investigation of crack tip dislocation emission in aluminum using multiscale molecular dynamics simulation and continuum modeling , 2014 .

[40]  Thomas Hammerschmidt,et al.  Analytic bond-order potentials for the bcc refractory metals Nb, Ta, Mo and W , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  Masoud K. Darabi,et al.  Molecular dynamics simulation of crack propagation in fcc materials containing clusters of impurities , 2006 .

[42]  A. Spielmannová,et al.  3D atomistic simulation of the interaction between a ductile crack and a Cu nanoprecipitate , 2009 .

[43]  Peter Gumbsch,et al.  Mechanisms of dislocation multiplication at crack tips , 2013 .

[44]  Hans-Rainer Trebin,et al.  Crack front propagation by kink formation , 2009 .

[45]  Wang Weiqiang,et al.  Interaction and coalescence of nanovoids and dynamic fracture in silica glass: multimillion-to-billion atom molecular dynamics simulations , 2009 .

[46]  A. Jérusalem,et al.  Multiscale computational modeling of deformation mechanics and intergranular fracture in nanocrystalline copper , 2014 .

[47]  P. Gumbsch,et al.  Phonon emission induced dynamic fracture phenomena. , 2011, Physical review letters.

[48]  H. V. Swygenhoven,et al.  Intergranular fracture in nanocrystalline metals , 2002 .

[49]  N. Bernstein,et al.  Lattice trapping barriers to brittle fracture. , 2003, Physical review letters.

[50]  Gérard Michot,et al.  Dislocation loops at crack tips: nucleation and growth— an experimental study in silicon , 1993 .

[51]  A. A. Nazarov,et al.  Crack nucleation at disclinated triple junctions , 2007 .

[52]  Siegfried Schmauder,et al.  Simulation of crack propagation in alumina with ab initio based polarizable force field. , 2012, The Journal of chemical physics.

[53]  M C Payne,et al.  "Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation. , 2004, Physical review letters.

[54]  P. Gumbsch,et al.  Low-speed fracture instabilities in a brittle crystal , 2008, Nature.

[55]  William A. Curtin,et al.  Multiscale modelling of dislocation/grain-boundary interactions: I. Edge dislocations impinging on Σ11 (1 1 3) tilt boundary in Al , 2006 .

[56]  D. Farkas Fracture mechanisms of symmetrical tilt grain boundaries , 2000 .

[57]  D. Farkas,et al.  Molecular Dynamics Investigation on the Fracture Behavior of Nanocrystalline Fe , 2002 .

[58]  Matteo Ciccotti,et al.  Griffith Cracks at the Nanoscale , 2013 .

[59]  Peter Gumbsch,et al.  Bond order potentials for fracture, wear, and plasticity , 2012 .

[60]  Ting Zhu,et al.  Atomistic study of dislocation loop emission from a crack tip. , 2004, Physical review letters.

[61]  M. Demkowicz,et al.  Healing of Nanocracks by Disclinations Citation , 2013 .

[62]  R. Chang An atomistic study of fracture , 1970 .

[63]  M. Plomp,et al.  Controlling crystal surface termination by cleavage direction. , 2001, Physical Review Letters.

[64]  L. Ponson,et al.  Quantitative Analysis of Crack Closure Driven by Laplace Pressure in Silica Glass , 2011 .

[65]  B. Liu,et al.  Mixed-pattern cracking in silica during stress corrosion: A reactive molecular dynamics simulation , 2014 .

[66]  Structural and chemical embrittlement of grain boundaries by impurities: A general theory and first-principles calculations for copper , 2006, cond-mat/0608508.

[67]  A. Saxena Creep and creep–fatigue crack growth , 2015, International Journal of Fracture.

[68]  D. Farkas Atomistic simulations of metallic microstructures , 2013 .

[69]  Huajian Gao,et al.  On intrinsic brittleness and ductility of intergranular fracture along symmetrical tilt grain boundaries in copper , 2010 .

[70]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[71]  Edward H. Glaessgen,et al.  Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum , 2006 .

[72]  E. Kaxiras,et al.  Hydrogen-enhanced local plasticity in aluminum: an ab initio study. , 2001, Physical review letters.

[73]  Michael P Marder,et al.  Origin of crack tip instabilities , 1994, chao-dyn/9410009.

[74]  Eric A. Stach,et al.  A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading , 2002 .

[75]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[76]  L. Ponson,et al.  Depinning transition in the failure of inhomogeneous brittle materials. , 2008, Physical review letters.

[77]  Sandro Scandolo,et al.  An ab initio parametrized interatomic force field for silica , 2002 .

[78]  Crack nucleation at the symmetrical tilt grain boundary in tungsten , 2008 .

[79]  F. Gao,et al.  Blunting of a brittle crack at grain boundaries: An atomistic study in BCC Iron , 2013 .

[80]  P. Gumbsch Atomistic modelling of diffusion-controlled interfacial decohesion , 1999 .

[81]  J. Sethna,et al.  A comparison of finite element and atomistic modelling of fracture , 2008, 0803.1003.

[82]  Effect of Impurities on Σ3 (111) Grain-Boundary Fracture in Tungsten—Atomistic Simulation , 1997 .

[83]  K. Ravi-Chandar,et al.  An experimental investigation into dynamic fracture: I. Crack initiation and arrest , 1984 .

[84]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[85]  E. Kaxiras,et al.  Hydrogen embrittlement of aluminum: the crucial role of vacancies. , 2005, Physical review letters.

[86]  J. E. Sinclair The influence of the interatomic force law and of kinks on the propagation of brittle cracks , 1975 .

[87]  K. Sieradzki,et al.  Brittle behavior of ductile metals during stress-corrosion cracking , 1985 .

[88]  J. Kermode,et al.  A first principles based polarizable O(N) interatomic force field for bulk silica. , 2010, The Journal of chemical physics.

[89]  T. Zhu,et al.  Atomistic characterization of three-dimensional lattice trapping barriers to brittle fracture , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[90]  Jay Fineberg,et al.  Instability in dynamic fracture , 1999 .

[91]  D. Nguyen-Manh,et al.  Magnetic bond-order potential for iron. , 2011, Physical review letters.

[92]  Chong-yu Wang,et al.  Influence of Re on the propagation of a Ni/Ni3 Al interface crack by molecular dynamics simulation , 2013 .

[93]  Tianxiang Liu,et al.  Atomistic modeling of the crack–void interaction in α-Fe , 2014 .

[94]  Keith A Runge,et al.  Molecular dynamics studies of brittle fracture in vitreous silica : Review and recent progress , 2005 .

[95]  T. Zhu,et al.  Stress-dependent molecular pathways of silica–water reaction , 2005 .

[96]  C. Everitt,et al.  Gravity Probe B:一般相対論をテストする宇宙実験の最終結果 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2011 .

[97]  Noam Bernstein,et al.  Hybrid atomistic simulation methods for materials systems , 2009 .

[98]  Nicholas Petrone,et al.  High-Strength Chemical-Vapor–Deposited Graphene and Grain Boundaries , 2013, Science.

[99]  Gumbsch,et al.  Directional anisotropy in the cleavage fracture of silicon , 2000, Physical review letters.

[100]  P. Gumbsch,et al.  Impulsive fracture of fused quartz and silicon crystals by nonlinear surface acoustic waves , 2003 .

[101]  Gumbsch,et al.  Cleavage anisotropy in tungsten single crystals. , 1996, Physical review letters.

[102]  B. Lawn,et al.  An atomistic study of cracks in diamond-structure crystals , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[103]  M. J. Luton,et al.  The effect of heterogeneities on dislocation nucleation barriers from cracktips in α-Fe , 2009 .

[104]  Damage nucleation from repeated dislocation absorption at a grain boundary , 2014, 1405.3974.

[105]  H. Beom,et al.  Molecular statics simulations of intergranular fracture along Σ11 tilt grain boundaries in copper bicrystals , 2014, Journal of Materials Science.

[106]  Noam Bernstein,et al.  Dynamic Fracture of Silicon: Concurrent Simulation of Quantum Electrons, Classical Atoms, and the Continuum Solid , 2000 .

[107]  J. Bouchaud,et al.  Evidence of deep water penetration in silica during stress corrosion fracture. , 2010, Physical review letters.

[108]  G. Schoeck Thermally activated crack-propagation in brittle materials , 1990 .

[109]  A. De Vita,et al.  Atomically smooth stress-corrosion cleavage of a hydrogen-implanted crystal. , 2010, Physical review letters.

[110]  Jean-Baptiste Leblond,et al.  Multiscale cohesive zone model for propagation of segmented crack fronts in mode I+III fracture , 2015, International Journal of Fracture.

[111]  M. Demkowicz,et al.  Healing of nanocracks by disclinations. , 2013, Physical review letters.

[112]  F. Barbier,et al.  Liquid metal embrittlement: A state-of-the-art appraisal , 1999 .

[113]  D. Sherman,et al.  Dynamic instabilities in {1 1 1} silicon , 2008 .

[114]  Qiang Liu,et al.  Crack propagation behaviors at Cu/SiC interface by molecular dynamics simulation , 2014 .

[115]  Johannes J. Möller,et al.  Fracture toughness and bond trapping of grain boundary cracks , 2014 .

[116]  G. Michot Interaction of a dislocation with a crack tip: From stimulated emission to avalanche generation , 2011 .

[117]  Leslie Banks-Sills,et al.  Interface fracture mechanics: theory and experiment , 2015, International Journal of Fracture.

[118]  Peter Gumbsch,et al.  Screened empirical bond-order potentials for Si-C , 2013, 1301.2142.

[119]  S. Wiederhorn,et al.  Crack‐Tip Structure in Soda–Lime–Silicate Glass , 2005 .

[120]  A. Hartmaier,et al.  Analyzing crack-tip dislocations and their shielding effect on fracture toughness , 2008 .

[121]  Franz Gähler,et al.  Direct Wolf summation of a polarizable force field for silica. , 2010, The Journal of chemical physics.

[122]  F Célarié,et al.  Glass breaks like metal, but at the nanometer scale. , 2003, Physical review letters.

[123]  B. Seiser,et al.  Analytic bond-order potential expansion of recursion-based methods , 2013 .

[124]  S. Wiederhorn,et al.  Do plastic zones form at crack tips in silicate glasses? , 2007 .

[125]  Rajiv K. Kalia,et al.  Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers , 2001 .

[126]  H. Janka,et al.  Neutrino signal of electron-capture supernovae from core collapse to cooling , 2010 .

[127]  J. R. Rice,et al.  Can crack front waves explain the roughness of cracks , 2002 .

[128]  James R. Rice,et al.  Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .

[129]  Robb Thomson,et al.  Lattice Trapping of Fracture Cracks , 1971 .

[130]  Peter Gumbsch,et al.  Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range , 2008 .

[131]  J. Petucci,et al.  Molecular dynamics simulations of brittle fracture in fcc crystalline materials in the presence of defects , 2014 .

[132]  L. Torner,et al.  Compactons and bistability in exciton-polariton condensates , 2012, 1212.1287.

[133]  D. Sherman,et al.  Large local deflections of a dynamic crack front induced by intrinsic dislocations in brittle single crystals. , 2002, Physical review letters.

[134]  Sheldon M. Wiederhorn,et al.  Influence of Water Vapor on Crack Propagation in Soda‐Lime Glass , 1967 .

[135]  M. Harmer,et al.  The Role of a Bilayer Interfacial Phase on Liquid Metal Embrittlement , 2011, Science.

[136]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[137]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[138]  Real‐Time Observation of a Non‐Equilibrium Liquid Condensate Confined at Tensile Crack Tips in Oxide Glasses , 2005, cond-mat/0509209.

[139]  Stéphane Roux,et al.  Damage measurements via DIC , 2015, International Journal of Fracture.

[140]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[141]  Kamran Dehghani,et al.  Molecular dynamic simulation of crack propagation in nanocrystalline Ni containing different shapes and types of second phases , 2011 .

[142]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[143]  Nanoscale damage during fracture in silica glass , 2006, cond-mat/0608730.

[144]  B. Merle,et al.  Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests , 2011 .

[145]  J. Fineberg,et al.  Crack front waves in dynamic fracture , 2003 .

[146]  Erik Bitzek Atomistic Simulation of Dislocation Motion and Interaction with Crack Tips and Voids , 2007 .

[147]  Mohammed Cherkaoui,et al.  An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth , 2013 .

[148]  A. Hartmaier,et al.  Thermal activation of crack-tip plasticity: The brittle or ductile response of a stationary crack loaded to failure , 2005 .

[149]  Efthimios Kaxiras,et al.  Hydrogen-Enhanced Local Plasticity in Aluminum , 2001 .

[150]  Robert F. Cook,et al.  Strength and sharp contact fracture of silicon , 2006 .

[151]  M. Marder Effects of atoms on brittle fracture , 2004 .

[152]  P. Hirsch,et al.  Dislocation activity and brittle-ductile transitions in single crystals , 1994 .

[153]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[154]  M. Payne,et al.  Stress-Driven Oxidation Chemistry of Wet Silicon Surfaces , 2008, 0904.2091.

[155]  Gaurav Singh,et al.  Validity of linear elasticity in the crack-tip region of ideal brittle solids , 2014, International Journal of Fracture.

[157]  R. Chaudhuri Three-dimensional mixed mode I+II+III singular stress field at the front of a $${\varvec{(}}\mathbf{111 }{\varvec{)}[}\bar{\mathbf{1 }}\bar{\mathbf{1 }}\mathbf 2 {\varvec{]}\times [}\mathbf 1 \bar{\mathbf{1 }}\mathbf 0 {\varvec{]}}$$(111)[1¯1¯2]×[11¯0] crack weakening a diamond cubic mono-crystallin , 2014 .

[158]  R. Pippan,et al.  Characterization of the fracture toughness of micro-sized tungsten single crystal notched specimens , 2012 .

[159]  Ke Yang,et al.  In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel , 2006 .

[160]  Matteo Ciccotti,et al.  Stress-corrosion mechanisms in silicate glasses , 2009, 0901.2809.

[161]  Joseph C. Fogarty,et al.  A reactive molecular dynamics simulation of the silica-water interface. , 2010, The Journal of chemical physics.

[162]  T. Zhu,et al.  Atomistic configurations and energetics of crack extension in silicon. , 2004, Physical review letters.

[163]  Anjan A. Sen,et al.  The thawing dark energy dynamics: Can we detect it? , 2009, 0907.2814.

[164]  Rajiv K. Kalia,et al.  Environmental effects of H2O on fracture initiation in silicon: A hybrid electronic-density-functional/molecular-dynamics study , 2004 .

[165]  P. Gumbsch Brittle fracture and the breaking of atomic bonds , 2001 .

[166]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[167]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[168]  M. Hribernik Cleavage oriented iron single crystal fracture toughness , 2006 .

[169]  Brian Lawn,et al.  Fracture of brittle solids: References and reading list , 1993 .