A Sound and Complete Proof Rule for Region Stability of Hybrid Systems

Region stability allows one to formalize hybrid systems whose trajectories may oscillate (within a given allowance) even after having 'stabilized'. Unfortunately, until today no proof rule (giving necessary and sufficient conditions for the purpose of verifying region stability) has been available. This paper fills the gap. Our (sound and complete) proof rule connects region stability with the finiteness of specific state sequences and thus with the emerging set of verification methods for program termination.

[1]  Andreas Podelski,et al.  Transition predicate abstraction and fair termination , 2005, POPL '05.

[2]  M. Branicky Stability of hybrid systems: state of the art , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[3]  V. Lakshmikantham,et al.  Practical Stability Of Nonlinear Systems , 1990 .

[4]  Andreas Podelski,et al.  Abstraction Refinement for Termination , 2005, SAS.

[5]  Michael S. Branicky,et al.  Simulation of Hybrid Systems , 1996, Hybrid Systems.

[6]  Andreas Podelski,et al.  A Complete Method for the Synthesis of Linear Ranking Functions , 2004, VMCAI.

[7]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[8]  Patrick Cousot,et al.  Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming , 2005, VMCAI.

[9]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[10]  Henny B. Sipma,et al.  Synthesis of Linear Ranking Functions , 2001, TACAS.

[11]  Andreas Podelski,et al.  Proving that programs eventually do something good , 2007, POPL '07.

[12]  Henny B. Sipma,et al.  Termination of Polynomial Programs , 2005, VMCAI.

[13]  Andreas Podelski,et al.  Termination proofs for systems code , 2006, PLDI '06.

[14]  Henny B. Sipma,et al.  Practical Methods for Proving Program Termination , 2002, CAV.

[15]  A. Michel,et al.  Stability Analysis of Discontinuous Dynamical Systems with Applications , 1996 .

[16]  Andreas Podelski,et al.  Model Checking of Hybrid Systems: From Reachability Towards Stability , 2006, HSCC.

[17]  T. Henzinger The theory of hybrid automata , 1996, LICS 1996.

[18]  A. Rybalchenko,et al.  Transition invariants , 2004, LICS 2004.

[19]  Stefan Pettersson,et al.  Analysis and Design of Hybrid Systems , 1999 .

[20]  Maciej Koutny,et al.  Applications and Theory of Petri Nets 2001 , 2001, Lecture Notes in Computer Science.

[21]  Kousha Etessami,et al.  Analysis of Recursive Game Graphs Using Data Flow Equations , 2004, VMCAI.

[22]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[23]  Ashish Tiwari,et al.  Termination of Linear Programs , 2004, CAV.

[24]  Thomas A. Henzinger,et al.  Hybrid Systems: Computation and Control , 1998, Lecture Notes in Computer Science.